## CSC 225 Midterm Exam

## Wed. June 27, 1990

1. [15] Fill in the following chart for the comparison model of computation:

| Problem                                  | Tight Lower Bound on Number of Comparisons<br>Needed for Worst Case |
|------------------------------------------|---------------------------------------------------------------------|
| (a) Search for element in unsorted array |                                                                     |
| (b) Search for element in sorted array   |                                                                     |
| (c) Find max in a sorted array           |                                                                     |
| (d) Find max in an unsorted array        |                                                                     |
| (e) Sort n numbers                       |                                                                     |

For (e), give an answer which is correct up to a multiplicative constant factor. Give exact answers for (a)-(d).

- 2. [25] Prove that the lower bound you gave for sorting for question #1 is tight. Include a high level description of an appropriate algorithm and justify any results you need regarding the complexity of that algorithm (as we've been doing in class).
- 3. [25] You work as a programmer for the phone company. You are given a long list of telephone bills and a list of checks from good customers. Consider the following two algorithms for matching customers with bills so we can determine who has not paid.

**Approach 1:** Do not sort the telephone bills. Do linear search for each of the p bill payments.

**Approach 2:** Sort the bills and the bill payments by telephone number and do a merge to match customers with bills.

Compare the worst case time complexities. Which approach is the better algorithm?

4. [20] Prove that the solution to the following recurrence relation is  $\Theta(k 2^k)$  by finding appropriate upper and lower bounds.

$$f(k) = k 2^{k} + f(k-1),$$
  $f(0) = 0$ 

5. [20] Define

- (a) worst case time complexity of an algorithm,
- (b) the comparison model of computation,
- (c) internal sort (you do not need to define sort), and
- (d) an appropriate basic operation for analysing an algorithm.