CSC 225 Midterm Exam

June 22, 2001

Recall that you need at least $40 \%(40 / 100)$ in order to write the final exam in this course.

1. [20] Assume $n=2^{k}-1$ for some integer k. Solve the following recurrence using repeated substitution: $T(n)=n+2 T\left(\frac{n-1}{2}\right), T(7)=5$.
2. [20] Prove by induction that your solution to question \#1 is correct. Or for part marks [10], apply induction to the point where you realize that your solution to \#1 is incorrect, and explain what goes wrong.
The recurrence from Question \#1: $T(n)=n+2 T\left(\frac{n-1}{2}\right), \quad T(7)=5$. You may assume that $n=2^{k}-1$ for some integer k.
3. Circle True or False and justify your answer. No marks will be given unless there is a correct justification.
(a) [5] Let a_{0}, a_{1}, a_{2}, and a_{3} be integers where $a_{i}>0$ for all $i=0,1,2,3$. Then $p(n)=a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}$ is in $\Theta\left(n^{3}\right)$.
True
False
(b) [5] An algorithm for sorting n numbers which is $O(n \log n)$ in the worst case is always faster than an algorithm which is $O\left(n^{2}\right)$ in the worst case.

True

False
(c) [5] It is possible to sort an array of n numbers in $O(n \log n)$ time in the worst case.
True
False
(d) [5] Let f, g, and h be functions from the natural numbers to the positive real numbers. Then if $g \in \Omega(f)$ and $g \in O(h)$, and $f \in O(h)$ then $g \in \Theta(h)$.
True
False
4. [20] Suppose we are given as input two linked lists L_{1} (with $n 1$ nodes, and start/rear pointers start 1 and rear 1) and L_{2} (with $n 2$ nodes, and start/rear pointers start 2 and rear2). The objective is to create a new linked list L with n nodes, and start/rear pointers start and rear such that L is L_{1} concatenated with L_{2}. Give detailed pseudocode for an algorithm for this that takes $O(1)$
time. Marks will be deducted for correct solutions that are more complex than necessary.
5. [20] Give pseudocode for an iterative divide/split function for merge sort which takes as input a linked list L starting at start, and returns as output two lists L_{1} and L_{2} starting at start 1 and start 2 respectively. The algorithm should work by placing the first cell from L on L_{1}, then it should place the second cell from L on L_{2}, then the third cell from L goes on L_{1}, and the fourth cell from L goes on L_{2}, and so on. For example, if the input is:

The output should be:

Be sure to include lots of comments in your pseudocode.

