## CSC 225 Final Exam

Fall 1992

1. [10] For the following algorithms, express the best and worst case time complexities using $\Theta$ notation. Assume the data is stored in an array of size $n$.

| Algorithm | Best Case Time Complexity | Worst Case Time Complexity |
| :--- | :--- | :--- |
| (a) Linear Search |  |  |
| (b) Binary Search |  |  |
| (c) MaxSort |  |  |
| (d) Heapsort |  |  |
| (e) Quicksort |  |  |

2. [20] Circle true or false for each question and justify your answer.
(a) Under the decision tree model, any algorithm for sorting 4 numbers requires at least 5 comparisons in the worst case.
True

## False

(b) An algorithm which takes $O\left(n^{2}\right)$ time in the worst case should always be preferred over an algorithm which is $O\left(n^{3}\right)$ in the worst case.
True False
(c) The lower bound for sorting is $\Omega(n \log n)$ so it is impossible to find a sorting algorithm which is $O(n)$ in the worst case.

## True <br> False

(d) In order to find a minimum weight spanning tree, we might have to completely order the edges of the graph by edge weight. Thus under the comparison model, any algorithm for minimum spanning tree is $\Omega(m \log m)$ in the worst case, $m$ is the number of edges.

## True False

3. [20] Define
(a) the MST problem,
(b) the average case complexity of an algorithm,
(c) a lower bound for a problem, and
(d) amortized cost of an algorithm.
4. Let $f(k)=\sum_{i=1}^{k} i 2^{i}$.
(a) [5] Prove that $k 2^{k}$ is a lower bound for $f(k)$.
(b) [5] Prove that $k 2^{k+1}$ is an upper bound for $f(k)$.
(c) [5] State a definition of the set of functions $\Theta(f(n))$. Do not use limits in your definition. (You can define it in terms of $O$ and/or $\Omega$ as long as you define them without using limits).
(d) [5] Use parts (a), (b), and (c) to prove $f(k)$ is in $\Theta\left(k 2^{k}\right)$. Do not use limits.
5. You work as a programmer for the phone company. You are given a long list of $n$ telephone bills and a list of $p$ checks from good customers. Consider the following two algorithms for matching customers with bills so we can determine who has not paid.
Approach 1: Do not sort the telephone bills. Do linear search for each of the $p$ bill payments.
Approach 2: Sort the bills and the bill payments by telephone number and do a merge to match customers with bills.
(a) [10] What are the worst case time complexities of the two approaches?
(b) [5] When is Approach 1 faster asymptotically? (Use Big O type notation to express your answer).
(c) [5] When is Approach 2 faster asymptotically? (Use Big O type notation to express your answer).
6. [20] Use Dijkstra's Shortest Path algorithm to compute the length of a shortest path from vertex one to each of the other vertices of the following graph. The exam had a graph here. Make up your own example. Mark the tree edges as follows:

## Solution:

| Vertex | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Length of <br> Shortest Path |  |  |  |  |  |  |  |

7.(a) [5] Draw the picture (directed graph) associated with the following UNION/FIND array.

| Vertex | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Parent | 2 | 2 | 3 | 1 | 5 | 2 | 5 | 2 |

(b) [5] Give pseudo-code for a non-collapsing FIND using the data data structures as given in part (a).
(c) [10] Give Pseudo code for a collapsing FIND using the data data structures as given in part (a).
8. Apply the Heapsort algorithm discussed in class (with a max-heap) to the following array showing the data stored in the array after each of the indicated steps. As well, draw a binary tree representation of the heap at each step.
(a) [10] Building the heap.

|  | Indices: | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Step | Initial data: | 2 | 3 | 5 | 6 | 7 | 9 | 1 |
| 1 | Filter_up(List[1]): |  |  |  |  |  |  |  |
| 2 | Filter_up(List[2]): |  |  |  |  |  |  |  |
| 3 | Filter_up(List[3]): |  |  |  |  |  |  |  |
| 4 | Filter_up(List[4]): |  |  |  |  |  |  |  |
| 5 | Filter_up(List[5]): |  |  |  |  |  |  |  |
| 6 | Filter_up(List[6]): |  |  |  |  |  |  |  |

## Binary Tree picture of the heap after each step:

(b) [10] Sorting by repetitively deleting the maximum element.

| Step | Indices: | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | (from previous page): |  |  |  |  |  |  |  |
| 7 | Delete_Max: |  |  |  |  |  |  |  |
| 8 | Delete_Max: |  |  |  |  |  |  |  |
| 9 | Delete_Max: |  |  |  |  |  |  |  |
| 10 | Delete_Max: |  |  |  |  |  |  |  |
| 11 | Delete_Max: |  |  |  |  |  |  |  |
| 12 | Delete_Max: |  |  |  |  |  |  |  |

## Binary Tree picture of the heap after each step:

