CSC 225 Final Exam Fall 1992

1. [10] For the following algorithms, express the best and worst case time complexities using Θ notation. Assume the data is stored in an array of size *n*.

Algorithm	Best Case Time Complexity	Worst Case Time Complexity
(a) Linear Search		
(b) Binary Search		
(c) MaxSort		
(d) Heapsort		
(e) Quicksort		

- 2. [20] Circle true or false for each question and justify your answer.
- (a) Under the decision tree model, any algorithm for sorting 4 numbers requires at least 5 comparisons in the worst case.

True False

(b) An algorithm which takes $O(n^2)$ time in the worst case should always be preferred over an algorithm which is $O(n^3)$ in the worst case.

(c) The lower bound for sorting is $\Omega(n \log n)$ so it is impossible to find a sorting algorithm which is O(n) in the worst case.

True False

- (d) In order to find a minimum weight spanning tree, we might have to completely order the edges of the graph by edge weight. Thus under the comparison model, any algorithm for minimum spanning tree is $\Omega(m \log m)$ in the worst case, *m* is the number of edges.
 - True False
- 3. [20] Define
- (a) the MST problem,
- (b) the average case complexity of an algorithm,
- (c) a lower bound for a problem, and
- (d) amortized cost of an algorithm.

4. Let
$$f(k) = \sum_{i=1}^{k} i 2^{i}$$

(a) [5] Prove that $k 2^k$ is a lower bound for f(k).

- (b) [5] Prove that $k 2^{k+1}$ is an upper bound for f(k).
- (c) [5] State a definition of the set of functions $\Theta(f(n))$. Do not use limits in your definition. (You can define it in terms of *O* and/or Ω as long as you define them without using limits).
- (d) [5] Use parts (a), (b), and (c) to prove f(k) is in $\Theta(k 2^k)$. Do not use limits.
- 5. You work as a programmer for the phone company. You are given a long list of n telephone bills and a list of p checks from good customers. Consider the following two algorithms for matching customers with bills so we can determine who has not paid.

Approach 1: Do not sort the telephone bills. Do linear search for each of the *p* bill payments.

Approach 2: Sort the bills and the bill payments by telephone number and do a merge to match customers with bills.

- (a) [10] What are the worst case time complexities of the two approaches?
- (b) [5] When is Approach 1 faster asymptotically? (Use Big O type notation to express your answer).
- (c) [5] When is Approach 2 faster asymptotically? (Use Big O type notation to express your answer).
- 6. [20] Use Dijkstra's Shortest Path algorithm to compute the length of a shortest path from vertex one to each of the other vertices of the following graph. The exam had a graph here. Make up your own example. Mark the tree edges as follows:

Solution:

Vertex	1	2	3	4	5	6	7
Length of							
Shortest Path							

7.(a) [5] Draw the picture (directed graph) associated with the following UNION/FIND array.

Vertex	1	2	3	4	5	6	7	8
Parent	2	2	3	1	5	2	5	2

(b) [5] Give pseudo-code for a non-collapsing FIND using the data data structures as given in part (a). (c) [10] Give Pseudo code for a collapsing FIND using the data data structures as given in part (a).

- 8. Apply the Heapsort algorithm discussed in class (with a max-heap) to the following array showing the data stored in the array after each of the indicated steps. As well, draw a binary tree representation of the heap at each step.
- (a) [10] Building the heap.

	Indices:	0	1	2	3	4	5	6
Step	Initial data:	2	3	5	6	7	9	1
1	Filter_up(List[1]):							
2	Filter_up(List[2]):							
3	Filter_up(List[3]):							
4	Filter_up(List[4]):							
5	Filter_up(List[5]):							
6	Filter_up(List[6]):							

Binary Tree picture of the heap after each step:

(b) [10] Sorting by repetitively deleting the maximum element.

Step	Indices:	0	1	2	3	4	5	6
6	(from previous page):							
7	Delete_Max:							
8	Delete_Max:							
9	Delete_Max:							
10	Delete_Max:							
11	Delete_Max:							
12	Delete_Max:							

Binary Tree picture of the heap after each step: