
Preferentially Annotated Regular Path Queries

Gösta Grahne1, Alex Thomo2, and William Wadge2

1 Concordia University, Montreal, Canada, grahne@cs.concordia.ca
2 University of Victoria, Victoria, Canada, {thomo,wwadge}@cs.uvic.ca

Abstract. In this paper, we introduce preferential regular path queries. These are regular
path queries whose symbols are annotated with preference weights for “scaling” up or down
the intrinsic importance of matching a symbol against a (semistructured) database edge label.
Annotated regular path queries are expressed syntactically as annotated regular expressions.
We interpret these expressions in a uniform semiring framework, which allows different seman-
tics specializations for the same syntactic annotations. For our preference queries, we study
three important aspects: (1) (progressive) query answering (2) (certain) query answering in
LAV data-integration systems, and (3) query containment and equivalence. In all of these, we
obtain important positive results, which encourage the use of our preference framework for
enhanced querying of semistructured databases.

1 Introduction

Regular path queries are one of the basic building blocks of virtually all the mechanisms for querying
semistructured data, commonly found in information integration applications, Web and communi-
cation networks, biological data management, etc. Semistructured data is conceptualized as edge-
labeled graphs, and regular path queries are in essence regular expressions over the edge symbols.
The answer to a regular path query on a given graph (database) is the set of pairs of objects, which
are connected by paths spelling words in the language of the regular path query.

Seen from a different angle, regular path queries provide the user with a simple way of expressing
preferences for navigating database paths. Let us take an example from road network databases.
Suppose that the user wants to retrieve all the pairs of objects preferentially connected by highways,
and tolerating up to k provincial roads or city streets. Clearly, such preferences can easily be captured
by the regular path query

Q = highway∗ || (road + street + ǫ)k,

where || is the shuffle operator (see e.g. [16]).
It is exactly this ability of regular expressions to capture pattern preferences that has made them

very popular, starting from the early days of computers. However, let us take a more careful look
at the above example. It surely captures the user preferences, but in a “Boolean” way. A pair of
objects will be produced as an answer if there exists a path between them satisfying the user query.
In other words, there is just a “yes” or “no” qualification for the query answers. But, the answers
are not equally good! A pair of objects connected by a highway path with only 1 intervening road is
obviously a “better” answer than a pair of objects connected by a highway path with 5 intervening
roads.

Clearly, preferences beyond the “Boolean” ones cannot be captured by simple regular path
queries.

In this paper, we introduce preferentially annotated regular path queries, which are regular path
queries (regular expressions) with a very simple syntactic addition: the user can annotate the sym-
bols in the regular expressions with “markers” (typically natural numbers), which “strengthen” or
“weaken” her (pattern) preferences. For example, she can write

Q = (highway : 0)∗ || (road : 1 + street : 2 + ǫ)k,

to express that she ideally prefers highways, then roads, which she prefers less, and finally she can
tolerate streets, but with an even lesser preference. Given such a query, the system should produce
first the pairs of objects connected by highways, then the pairs of objects connected by highways
intervened by 1 road, and so on.

The above “so on” raises some important semantical questions. Is a pair of objects connected
by a highway path intervened by two roads equally good as another pair of objects connected by a
highway path intervened by one street only? Indeed, in this example, it might make sense to consider
them equally good, and “concatenate” weights by summing them up.

However, let us consider another example regarding travel itineraries. Assume that the preferen-
tially annotated user query is

Q = (viarail : 0)∗ || (greyhound : 1 + aircanada : 2 + ǫ)k.

Is now a pair of objects connected by a path with two greyhound segments equally equally preferrable
as a pair of objects connected with one aircanada segment? Here the answer is not clear anymore. If
the user is afraid of flying, she might want to “concatenate” edge-weights by choosing the maximum
of the weights. Then an itinerary with no matter how many greyhound segments is preferrable to an
itinerary containing only one flight segment.

We say that in the first case the preference semantics are “quantitative,” while in the second
case they are “qualitative.” We study both semantics for regular path queries, and leave the choice
as an option specified by the user during query time.

We also consider another choice of semantics, which is a hybrid between the quantitative and
qualitative semantics. Continuing the travel itinerary example, by following a purely qualitative
approach, greyhound itineraries are always preferrable to itineraries containing aircanada segments,
while these itineraries are equally preferrable, no matter how many lags the flight has. Although,
there might be applications where such qualification is all what is needed, in the particular example
we need to distinguish among itineraries on the same “level of discomfort.” Namely, we should be
able to (quantitatively) say for example that a direct aircanada route is preferable to an aircanada

route with a stop-over, which again is preferrable to an aircanada route with three lags. Notably,
such user preferences can concisely be captured by our hybrid semantics.

In total, from all the above, we have four kind of preference semantics: Boolean, quantitative,
qualitative, and hybrid. Other semantics can also be proposed, tailored to specific applications. In
all these semantics, we aggregate (“concatenate”) preference markers or weights along edges of the
paths, and then we aggregate path preferences when there are multiple paths connecting a pair of
objects. Hence, we regard the preference annotations as elements of a semiring, with two operations:
the “plus” and “times.” The “times” aggregates the preferences along edges of a path, while the
“plus” aggregates preferences among paths.

An interesting feature of our preference framework is that for all new semantics (quantitative,
qualitative, and hybrid), the syntactic user interface (i.e. annotated regular expressions) is exactly
the same. After the user writes the query, she also specifies which semantics the system should
assume for answering the query. It is straightforward for the user to preferentially annotate regular
path queries, and moreover, such annotation can be easily facilitated by system default values.

In this paper, we study three important aspects of our preferentially annotated queries. First, we
focus on query answering and design a progressive algorithm, which produces the answer tuples in
order of their “goodness” with respect to the user preferences. Notably, answering annotated regular
path queries is computationally no more difficult than the answering of classical regular path queries.
In both cases, a database object is accessed at most once.

Second, we turn our attention to query answering in data integration systems, in which we have
only incomplete information about databases. Such systems have been the focus of many studies
(cf. [4–6]1) and reasoning about query answering in this setting is a very important technology.

1 For the semistructured data case.

We introduce a technique, which we call “query sphering” and show how to progressively compute
answer tuples in this variant of incomplete information.

Third, we study query containment and equivalence of prefential regular path queries. We show
that containment is undecidable for the quantitative and the hybrid semantics and decidable for
qualitative semantics. Then, we present an important class of queries for which the containment is
decidable for both quantitative and hybrid semantics.

The rest of the paper is organized as follows. In Section 2, we overview related work. In Section 3,
we introduce the semiring framework for preferentially annotated regular path queries. In Section 4,
we give a progressive algorithm for computing the answer to an annotated query. In Section 5, we
define and reason about the certain answer to annotated queries in LAV data integration systems.
In Section 6, we introduce the concept of query spheres and give a characterization of the certain
answer in terms of query spheres. Then, in Section 7, we present algorithms for computing query
spheres under the different preference semantics. Finally, Section 8 is devoted to containment and
equivalence of preferential regular path queries.

2 Related Work

In relational databases, the most important work on preferences is by Chomicki in a series of papers.
One of his recent papers, which gives a detailed overview of the field, is [7]. However, in Chomicki’s
work, the preference framework is about reasoning on fixed-arity tuples of attribute values. In con-
trast, here we define “structural” preferences, in the sense that they apply to the paths used for
obtaining query answers. Because of this difference, the meaning of our “quantitative” and “quali-
tative” adjectives is different from the ones mentioned in [7].

Preferences for XML are studied by [17]. These preferences are aimed at comparing attribute
values of XML elements rather than structure of (parts of) documents. As characterized by [7], the
preferences of [17] seem to largely conform to the relational paradigm.

Regarding our qualitative preferences, they are similar in spirit with constraints in the framework
of Infinitesimal Logic studied in [22]. However, [22] focuses on the relational case only.

In [8], weighted path queries are introduced. Syntactically, such queries are the same as our
preferentially annotated queries. However, [8] do not give any semantics on their queries. Technically,
one can use their query answering algorithm to answer our queries on a given database. However, we
carefully study some important details of query answering, which are not taken into consideration in
[8]. Moreover, query answering on a given database is not our most important contribution in this
paper.

Regarding query answering (on a given database), one can also use, assuming quantitative se-
mantics only, the algorithm of [11] for queries under distortions. In that paper, there are also some
technical results, which can be adapted to help in some of our derivations. However, we do not do
this, due to the high computational complexity of constructs in [11]. Rather, we devise new and
better constructs, which are original and can contribute in research regarding formal languages as
well. Such research will be mentioned in relevant places during the exposition of the paper.

Finally, [24] and [25] deal with distributed evaluation of weighted regular path queries. However,
the algorithms of [24] and [25] apply to quantitative semantics only. We believe that they can also
be adapted for other semantics as well, and thus, [24, 25] should be considered to nicely complement
this work regarding query answering on distributed databases.

3 Databases and Preferential Regular Path Queries

Databases and classical regular path queries. We consider a database to be an edge-labeled
graph. Intuitively, the nodes of the database graph represent objects and the edges represent rela-
tionships between the objects.

Formally, let ∆ be an alphabet. Elements of ∆ will be denoted r, s, As usual, ∆∗ denotes the
set of all finite words over ∆. Words will be denoted by u,w, We also assume that we have a
universe of objects, and objects will be denoted a, b, c, . . . ,. A database DB is then a graph (V,E),
where V is a finite set of objects and E ⊆ V ×∆×V is a set of directed edges labeled with symbols
from ∆.

Before introducing preferentially annotated regular path queries, it will help to first review the
classical regular path queries.

A regular path query (RPQ) is a regular language over ∆. For the ease of notation, we will blur
the distinction between regular languages and regular expressions that represent them. Let Q be an
RPQ and DB = (V,E) a database. Then, the answer to Q on DB is defined as

Ans(Q,DB) = {(a, b) ∈ V : for some w ∈ Q, a
w

−→ b in DB},

where
w

−→ denotes a path spelling the word w in the database.

Semirings and annotated regular path queries. By a semiring we mean a tuple R = (R,⊕,⊗,0,1)
such that

1. (R,⊕,0) is a commutative monoid with 0 as the identity element for ⊕.
2. (R,⊗,1) is a monoid with 1 as the identity element for ⊗.
3. ⊗ distributes over ⊕: for all x, y, z ∈ R,

(x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z)

z ⊗ (x ⊕ y) = (z ⊗ x) ⊕ (z ⊗ y).

4. 0 is an anihilator for ⊗: ∀x ∈ R, x ⊗ 0 = 0 ⊗ x = 0.

The natural order � on R is defined as: x � y if and only if x ⊕ y = x. It is easily verified that
� is a partial order.

In this paper, we will in addition require for semirings of preferences to have a total natural order.
All the preference semirings mentioned in Introduction posses such an order.2 Observe that 0 is the
“biggest” element of the semiring, and it corresponds to the “infinitely worst” preference weight.

Now, let R = (R,⊕,⊗,0,1) be a semiring as above. An R-annotated language Q over ∆ is a
function

Q : ∆∗ → R.

We will call such Q’s annotated queries for short. Frequently, we will write (w, x) ∈ Q instead
of Q(w) = x. When such annotated queries are given by “annotated regular expressions,”3 we have
annotated regular path queries (ARPQ’s). Computationally, ARPQ’s are represented by “annotated
automata.”

An annotated automaton A is a quintuple (P,∆,R, τ, p0, F), where τ is a subset of P × ∆ × R × P .
Each annotated automaton A defines the annotated language (query) [[A]] defined by

[[A]] = {(w, x) ∈ ∆∗ × R : w = r1r2 . . . rn, x = ⊕ {⊗n
i=1xi : (pi−1, ri, xi, pi) ∈ τ, pn ∈ F}}.

Given a a database DB , and a query Q, annotated over a semiring R = (R,⊕,⊗,0,1) we define
the preferentially weighted answer of Q on DB as

Ans(Q,DB ,R) = {(a, b, x) ∈ V × V × R : x = ⊕{{y : (w, y) ∈ Q and a
w

−→ b in DB} ∪ {0}}.

Intuitively, we have (a, b,0) as an answer to Q, if there is no path in DB spelling some word in Q.

2 We want to note here that for database paths, it is difficult to find intuitively plausible preference semantics,
which would ask for a partial order only.

3 See the end of this section for a discussion about writting and interpreting annotated regular expressions.

Let us now discuss each of the preference semirings that we mentioned in Introduction. The
Boolean semiring is

B = ({T, F},∨,∧, F, T),

where T and F stand for “true” and “false” respectively, and ∨, ∧ are the usual “and,” and “or”
Boolean operators. ARPQ’s in the Boolean semiring correspond exactly to classical RPQ’s. The user
does not annotate explicitly the regular expression symbols by T or F . By default, all the symbols
present in the query are assumed to be annotated with T . Also, the system produces only the “T -
ranked” answers. In general, for any semiring it only makes sense to produce the answers, which are
not ranked by the 0 of the semiring. In practice, a 0-ranked answer means in fact “no answer.” For
the B semiring, we formally have that

Ans(Q,DB ,B) = {(a, b, T) : (a, b) ∈ Ans(Q,DB)} ∪ {(a, b, F) : (a, b) 6∈ Ans(Q,DB)}.

It is easy to see that a Boolean annotated automaton A = (P,∆,B, τ, p0, F) is indeed an “ordinary”
finite state automaton (P,∆, τ, p0, F).

In the case of quantitative preferences we have

N = (N ∪ {∞},min,+,∞, 0),

where min and + are the usual operators for integers. This semiring is also known as the tropical

semiring in the literature (cf. [23]). The user annotates query symbols by natural numbers.
In the case of qualitative preferences, we have

F = (N ∪ {∞},min,max,∞, 0).

This semiring is also known as the fuzzy semiring in the literature. Similarly to the quantitative
case, the user annotates query symbols by natural numbers. This is however, only syntactically “the
same” as the quantitative case. The semantics of the two cases are different. The numbers here
represent the “level of discomfort” for traversing database edges. As we mentioned in Introduction,
it is the choice of the user to specify the semantics that she desires.

Finally, for hybrid preferences, the user again uses the same query syntax as for the quantitative
and qualitative case. That is, the user annotates the query symbols with natural numbers. However,
here the set N is just the “user interface.” In fact the support set of the semiring H , for hybrid
preference semantics is

R = {0, 1, 1(2), . . . , 2, 2(2), . . .} ∪ {∞},

where the symbolic ingredients, n and i, of a semiring element n(i) are natural numbers. [Elements
1, 2, . . . are shorthand for 1(1), 2(1),] Intutitively, n represents the level of discomfort, while i

represents how many times a user is “forced to endure” that level of discomfort. While the subset
{0, 1, 2, . . .} is the user interface for annotating queries, set R is richer in elements in order to allow
for a finer ranking of query answers.

Regarding the semiring operations, we introduce

n(i) ⊕ m(j) =

n(i) if n < m

m(j) if n > m

n(min{i,j}) if n = m,

n(i) ⊗ m(j) =

n(i) if n > m

m(j) if n < m

n(i+j) if n = m

and for these we have 0 = ∞, 1 = 0. It is easy to verify that the semiring axioms are satisfied.
Reiterating, the user, the same as before, annotates query symbols with natural numbers repre-

senting her preferences. However, semantically the queries will be different from both the quantitative
and qualitative case, while bearing similarities with both of them. Similarly with the qualitative se-
mantics, only database edges matched by transitions annotated with the “worst” level of discomfort
will really count in computing a preferential weight for a traversed path. On the other hand, differ-
ently from the qualitative semantics, and similarly with the quantitative semantics, paths with the

the same “worst-level of discomfort” are comparable. Namely, the best path will be the one with
the fewest “worst-level of discomfort” edges.

Expressing ARPQ’s. The database alphabet ∆ is normally considered finite (cf. [1]). However,
when writing annotated regular expressions, what we have is the extended alphabet ∆ × R, call
it Γ , which is infinite because R might be such. Yet, there is no problem to construct automata
from expressions on Γ , which are given using the normal syntax, which is sub-expressions combined
using the three operators + (or), · (concatenation), and ∗ (Kleene star). This is because classical
automata construction techniques (cf. [16]) deal only with the symbols that appear in the given
regular expression, which are finite. On the other hand suppose that the user writes the macro
(sub)expression Γ ∗. It easy to see that according to our semantics this is equivalent to (r1 : 1+ · · ·+
rn : 1)∗, where ∆ = {r1, . . . , rn}.

4 Answering Preferentially Annotated RPQ’s

Our goal here is to not only compute preferentially weighted answers to a query, but to compute
the answers in a progressive way, i.e. to compute the best answers first.

First, we will review the well-known method for the evaluation of classical RPQ’s (cf. [1]). In
essence, the evaluation proceeds by creating state-object pairs from the query automaton and the
database. For this, let A be an NFA that accepts an RPQ Q. Starting from an object a of a database
DB , we first create the pair (p0, a), where p0 is the initial state in A. Then, we create all the pairs
(p, b) such that there exist a transition from p0 to p in A, and an edge from a to b in DB , and
furthermore the labels of the transition and the edge match. In the same way, we continue to create
new pairs from existing ones, until we are not anymore able to do so. In essence, what is happening
is a lazy construction of a Cartesian product graph of the query automaton with the database graph.
Of course, only a small (hopefully) part of the Cartesian product is really contructed depending on
the selectivity of the query. The implicit assumption in [1] is that this part of the Cartesian product
fits in main memory and each object is not accessed more than once in secondary storage.

After obtaining the above Cartesian product graph, producing query answers becomes a question
of computing reachability of nodes (p, b), where p is a final state, from (p0, a), where p0 is the intial
state. Namely, if (p, b) is reachable from (p0, a), then (a, b) is a tuple in the query answer.

Now, when having instead an annotated query automaton, we can modify the classical matching
algorithm to build an annotated (or weighted) Cartesian product graph. This can be achieved by
assigning to the edges of this graph the corresponding (automaton) transition annotations (weights).

It is not difficult to see that, in order to compute preferentially weighted answers, we have to
find, in the Cartesian product graph, the (semiring) shortest paths from (p0, a) to all the nodes
(p, b), where p is a final state in the query automaton A.

In our algorithm, we, in a similar spirit with [1], lazily build the above mentioned Cartesian
product. However, we also compute “on the fly” shortest paths needed for preferentially weighting
the answer tuples.

Our algorithm is progressive, i.e. it computes answer tuples (w.r.t. each potential starting ob-
ject a) in the order of their preference rank. For this, Dijkstra’s algorithm is the best choice (compared
to Flloyd-Warshall algorithm). It fits perfectly with the lazy strategy of constructing the Cartesian
product graph, and it reaches the b objects in a “best first” fashion. Our general algorithm, which
works with all the proposed preference semirings is as follows.

Algorithm 1

Input: An ǫ-free automaton A for an R-annotated query Q, and a database DB .
Output: Ans(Q,DB , R).
Method: For each potential start object a4 compute the set Reacha as follows.

4 Finding potential start objects can be facilitated by classical indexes on the database edge labels.

1. Initialize Reacha to {(p0, a,1, false)}.
/* The boolean flag denotes the membership of a node (p, b) in the set of nodes for which we know the
exact cost from source node (p0, a) (See Dijkstra’s algorithm in [2]). */

2. Repeat 3 until Reacha no longer changes.
3. Choose a quadruple (p, b, x, false) ∈ Reacha, such that

x = ⊕{y : (p, b, y, false) ∈ Reach}.

Update (p, b, x, false) to (p, b, x, true).
4. If p is a final state, then insert (a, b, x) in Ans(Q,DB , R).
5. If there is a transition (p, r, y, q) in A and there is an edge b

r

−→ c in DB

then add (q, c, x ⊗ y, false) to Reacha.

Observe that a tuple (a, b, x) can be produced as output as soon as the corresponding quadruple, after
being inserted in Reacha, takes a permanent weight, i.e. when its boolean flag becomes true. We can
construct the sets Reacha in parallel and choose to process at each time the set with the quadruple
(p, b, x, false), which has the “smallest” x w.r.t. ⊕. This can be achieved by storing the quadruples
of the Reacha sets in a common priority queue. We omit the details due to space constraints.5 By
doing this, the algorithm becomes progressive not only relative to start objects, but absolute to the
whole query answer.

5 Preferentially Ranked Answers on Possible Databases

In a semistructured LAV data integration system (cf. [4, 5, 20, 6]), we do not have a database in the
classical sense. Instead what we have is incomplete information, which is in the form of a set of
“data-sources,” characterized by an algebraic definition over a “global schema.”

Each data-source also has a name, and the set of these names constitutes the “local schema.”
The LAV system also has a set of tuples over the local schema. The queries are formulated on the
“integrated” global schema. Since the data exists in the local schema only, a translation from the
global to the local schema has to be performed in order to be able to compute query answers.

When the user gives an ARPQ, the question is: What does it mean to preferentially answer such
a query in a LAV system?

Formally, let ∆ be the global schema. Let S = {S1, . . . , Sn} be a set of data-source definitions,
with each Si being a regular language over the global schema ∆. Associated with each data-source
is a name si, for i = 1, . . . , n. The local schema is the set Ω = {s1, . . . , sn} of all the data-source
names. There is a natural mapping between the local and global schema: for each si ∈ Ω, we
set def(si) = Si. The mapping or substitution6 def associates with each data-source name si the
definition language Si. The substitution def is applied to words, languages, and regular expressions
in the usual way (see e. g. [16]).

Let Ω = {s1, . . . sn} be the local schema as before. Then, a source collection S over (S, Ω) is a
database over (D,Ω). As mentioned earlier, in a LAV system, the user formulates queries on the
global schema, i.e. ∆, and the system has to compute the answer on the data available in the local
schema, i.e. Ω. For this, we have to reason about hypothetical databases over (D,∆) that a database
over (D,Ω) could possibly represent.

A source collection S defines a set poss(S) of databases over (D,∆) as follows:

poss(S) = {DB : there exists a path a
w∈Si−→ b in DB for each (a, si, b) ∈ S}.

This definition reflects the intuition about the connection of an edge (a, si, b) in S with paths between
a and b in hypothetical DB ’s.

5 Also we omit our ǫ-removal procedure, which is an adaptation of the classical ǫ-removal method.
6 In a language theoretic terminology.

For classical regular path queries, what we usually compute is the certain answer using S, which
is the set of all tuples, which are in the query answer on each possible database.

Consider a classical regular path query as a preferentially annotated query over the Boolean
semiring B. In a semiring terminology, what we do is an “∧” aggregation of query answers on the
possible databases. Also, let us overload ∧ operator to work for answer tuples and sets as follows:
(a, b, x) ∧ (a, b, y) = (a, b, x ∧ y), and

Ans(Q,DB1,B) ∧ Ans(Q,DB2,B) =

{(a, b, x ∧ y) : (a, b, x) ∈ Ans(Q,DB1,B) and (a, b, y) ∈ Ans(Q,DB2,B)}.

Then, the certain answer w.r.t. S and “weighted” over B is

CAns(Q,S,B) =
∧

DB∈poss(S)

Ans(Q,DB ,B),

It is easy to verify that this definition is equivalent with the definition of the certain answer given
in other works as for example [4, 5].

In fact, ∧ for aggregating the answers on possible databases is the “dual operator” of ∨ used
for aggregating paths when computing answers on databases.7 Generalizing, in order to define the
certain answer for other semirings, we introduce the ⊙ operator, which is the dual of the path
aggregation operator ⊕. Namely,

x ⊙ y =

{

x if x ⊕ y = y

y if x ⊕ y = x.

This is possible since ⊕ induces a total order, and so, x ⊕ y is equal to either x or y. Clearly, ∧ is
the dual of ∨ according to this definition. Observe also that the opeator ⊙ induces the reverse order
(with respect to ⊕) among the elements of the semiring.

Similarly with the above overloading of ∧, we overload ⊙ to work with answer tuples and sets.
Now, for a query Q, annotated over a preference semiring R, we define the certain answer as

CAns(Q,S,R) =
⊙

DB∈poss(S)

Ans(Q,DB ,R).

In the above definition, a tuple (a, b, x), with x 6= 0, will belong to CAns(Q,S,R) iff for each
DB ∈ poss(S) there exists y � x such that (a, b, y) ∈ Ans(Q,DB ,R). This definition reflects the
certainty that objects a and b are always connected with paths, which are preferentially weighted
not more than x. As an example, consider the query

Q = (highway : 0)∗ ||(road : 1 + ǫ)∗,

and a source collection (consisting of single source with a single tuple) S = {(a, s, b)}, with definition

S = highway∗ ||(road + ǫ)5.

The possible databases for S are all those databases, which have at least a path (between a and b)
labeled by highways intervened by at most 5 roads. Now let us discuss the certain answer considering
the semirings for the quantitative, qualitative, and hybrid preference semantics.

In the quantative case, ⊙ is max, and we have (a, b, 5) as a certain answer. The weight of 5 states
exactly our certainty that in any possible database, there is a path from a to b, whose preferential

7 The fact that this operator ∧ is the same as the “multiplication” operator of the Boolean semiring for
aggregating edge-weights along paths, is just a coincidence.

weight w.r.t. the given query is not more than 5. Also, there exists a possible database in which the
best path between a and b is exactly 5.

In the qualitative case, ⊙ is again max. However, we have now (a, b, 1) as a certain answer. The
weight of 1 states our certainty that in any possible database, there is a path from a to b, and the
level of discomfort (w.r.t. the query) for traversing that path is not more than 1.

Finally, in the hybrid case, ⊙ is as follows

n(i) ⊙ m(j) =

m(j) if n < m

n(i) if n > m

n(max{i,j}) if n = m.

We have that (a, b, 1(5)) as a certain answer. This is because although the level of discomfort of the
best path connecting a with b in any possible database is 1, in the worst case (of such best paths),
we need to endure up to 5 times such discomfort (w.r.t. the query). Of course 1(5) is infinitely better
than 2.

6 Certain Answers via Query Spheres

In [4], there is given an algorithm, which computes the certain answer of a classical RPQ Q given a
source collection S. This translates into having available an algorithm for computing CAns(Q,S,B).

Now, let Q be an ARPQ with annotatations over a preference semiring R. In this section, we cast
computing tuples in CAns(Q,S,R) into computing tuples in CAns(Q,S,B), which is the Boolean
certain answer of Q, after “collapsing” all the annotations in Q into element T of the Boolean
semiring.

For this, we introduce the notion of “query spheres.” We formally define the y-sphere of Q, where
y ∈ R, as

Qy = {(w, x) ∈ ∆∗ × R : (w, x) ∈ Q and x � y, or otherwise y = 0}.

Let A be an annotated automaton recognizing Q. Then, Qy will be the query recognized by the
automaton Ay obtained from A by retaining only (transition) paths weighted by some x, which is no
more than y. We show in the next section how to obtain such automata for the different preference
semirings that we consider.

Clearly, Qx ⊆ Qy for x � y.8

For semirings in which the notion of the “next” element is well defined, we give a necessary and
sufficient condition for a tuple (a, b, y) to belong to CAns(Q,S,R). We give the following definition
about the “next element” property of a semiring.

A semiring R = (R,⊕,⊗,0,1) is said to be discrete iff for each x 6= 0 in R there exists y in R,
such that (a) x ≺ y, and (b) there does not exist z in R, such that x ≺ z ≺ y. The element y is
called the next element after x.

Notably, all our preference semirings are discrete. Let R be a discrete semiring. Also, let y (as
above) be the next element after (some) x. We show that

Theorem 1.

(a, b, y) ∈ CAns(Q,S,R) iff (a, b, T) ∈ CAns(Qy,S,B) and (a, b, F) ∈ CAns(Qx,S,B),

(a, b,1) ∈ CAns(Q,S,R) iff (a, b, T) ∈ CAns(Q1,S,B).

Proof. We only show here the first claim. The second claim can be shown similarly.
“If.” Let (a, b, T) be a tuple in CAns(Qy,S,B). Then, (a, b, T) will be in the answer of Qy on

each possible database with respect to the source collection S. Let, DB be such a possible database.

8 It is this property that motivates the use of “query spheres.”

For DB , we have (a, b, T) ∈ Ans(Qy,DB ,B). This means that there exists a path from a to b in DB ,
which spells a word w in Qy (considering it as a classical RPQ; see begining of this section). However,
Qy is an ARPQ and by its definition, what we have in fact is that (for this word w) (w, y′) ∈ Qy

for y′ � y. Thus, (a, b, y′) ∈ Ans(Q,DB ,R). In other words, if (a, b, T) ∈ CAns(Qy,S,B), then
a corresponding R-weighted tuple will be in the certain answer of the original query Q on each
possible database, and furthermore its weight on any such database will not be greater than y.

Now, if (a, b, T) ∈ CAns(Qy,S,B) but (a, b, F) ∈ CAns(Qx,S,B), then we claim that there
exists a possible database DB , for which we have (a, b, y) ∈ Ans(Q,DB ,R), i.e. the weight of such a
tuple is exactly y. If not, then we would have that for each possible DB , (a, b, y′) ∈ Ans(Q,DB ,R),
where y′ is stricly ≺ y. This means that in each possible DB there exist some path spelling a word,
say w, such that (w, y′) ∈ Q and y′ ≺ y (strict ≺). From the next element property, the above
implies that y′ � x. So, all these (w, y′) belong to Qx. This implies that (a, b, T) ∈ Ans(Qx,DB ,B),
for each possible DB , i.e. (a, b, T) ∈ CAns(Qx,S,B), which is a contradiction.

Hence, if (a, b, T) ∈ CAns(Qy,S,B) but (a, b, F) ∈ CAns(Qx,S,B), then (a, b, y) ∈ CAns(Q,S,R).

“Only if.” By the definition of ⊙ operator, we can observe that if (a, b, y) ∈ CAns(Q,S,R),
then (a, b, y′) ∈ Ans(Q,DB ,R), where y′ � y for each possible DB . This means that there exists
(w, y′) ∈ Q, where y′ ≤ y, and there exists a path from a to b in DB , spelling w. Clearly, (w, y′) ∈ Qy,
and so we have that (a, b, T) ∈ Ans(Qy,DB ,B). Since DB was an arbitrary possible database, we
get that (a, b, T) ∈ CAns(Qy,S,B).

Additionally, (a, b, y) ∈ CAns(Q,S,R) also means that there exists a possible database DB , for
which (a, b, y) ∈ Ans(Q,DB ,R). That is, the minimum weight of Q words, which are spelled by
paths in DB is exactly y, i.e. no word in Q with weight y′ ≺ y (strict) can match some path from a

to b in DB . So, we have that (a, b, F) ∈ CAns(Qx,S,B). ⊓⊔

From the above theorem, we conclude that if we are able to compute Qy for each y (relevant to
the query), then we could generate all the y-ranked tuples (a, b, y) of CAns(Q,S,R) by computing
with the algorithm of [4] CAns(Qy,S,B) and CAns(Qx,S,B), and then taking the set difference of
their T -tuples.

We present in the next section algorithms, which for a given y compute Qy, for the different
preference semirings that we study.

Now the question is, for what y’s to apply the method suggested by Theorem 1 for generating
(a, b, y) tuples of the certain answer? For this, let z = ⊙{x : (w, x) ∈ Q}. We state the following
theorem, which can be easily verified.

Theorem 2. Qz = Q.

For the quantitative and qualitative semirings, the existence of a z ≺ 0 (strict ≺) guarantees a
terminating procedure for ranking all the tuples in the certain answer. Simply, one has to repeat the
method of Theorem 1 starting with y equal to 1 and continuing for up to y equal to z. On the other
hand, for the hybrid semiring a “global” (upper bound) z is not enough. Rather, we need to reason
about “level-wise” z’s, as we explain later in this section.

Quantitative case. Interestingly, determining whether there exists such a z ≺ 0 coincides with
deciding the “limitedness” problem for “distance automata.” The later problem is widely known
and positively solved in the literature (cf. for example [12, 21, 23, 14]). The best algorithm is by [21],
and it runs in exponential time in the size of the automaton.

If the query automaton is limited in distance, and this limit is z, then we need to compute query
spheres up to Qz, which will be equivalent to Q.

On the other hand, if the query automaton is not limited in distance, we can still apply the same
procedure utilizing query spheres for ranking the tuples in the certain answer. However, the ranking
in this case is only eventually computable.

In practice, the user might provide beside the query, also an upper bound z′ on the preferential
weight of the answers that she is interested to retrieve. In such a case, we need to compute not more
than z′ query spheres in order to return all the tuples weighted less or equal to z′ in CAns(Q,S,R).

Qualitative case. Here, the existence of z ≺ ∞ (semiring 0) is guaranteed. This is because z will
be less or equal to the biggest transition weight in the query automaton.

Hybrid case. In this case, the existence of a global z ≺ ∞ does not guarantee the ability to rank all
the tuples in the certain answer. Rather we need for this the existence of the level-wise z’s. Namely,
we define the upper bound for level n as zn = ⊙{x : (w, x) ∈ Q and x ≺ n + 1} (strict ≺, and recall
n+1 is a shorthand for (n+1)(1)). If there exists i ∈ N, such that zn = n(i), we say that zn is finite.

Now, if zn is finite, then for determining the exact weight of the “n-range” tuples (a, b, n()) in

the certain answer, we need to compute query spheres from Q(n(1)) up to Q(n(i)).
If zn = zm for m ≺ n (strictly), then there cannot be any n-range tuple in the certain answer.
On the other hand, if zn > n(i) for each i ∈ N, then the exact weight of the “n-range” tuples is

only eventually computable.
Hence the question is how can we determine the existence of a finite zn? For this, we first

introduce the generalized query spheres Qn(∞)

=
⋃∞

i=0 Qn(i)

. If zn is finite, then there exists j ∈ N,

such that Qn(∞)

=
⋃j

i=0 Qn(i)

. But, the existence of such j can be found by deciding the limitedness

of an automaton for Qn(∞)

. Thus, we state that

Theorem 3. zn is finite iff Qn(∞)

is limited in distance.

The question is, how can we compute Qn(∞)

? In essence we want to extract the paths in a query
automaton A = (P,∆, N, p0, τA, F), which are weighted strictly less than n + 1. Such paths cannot
recognize words weighted more or equal to n + 1. In order to perform this extraction, we build a
one-state mask automaton Mn on the alphabet {0, 1, . . . , n}. Let τA be the transition relation of the
query automaton A. Then, Mn = ({q}, {0, 1, . . . , n}, q, τn, {q}), where τn = {(q,m, q) : (p, r,m, p′) ∈
τA and m ≤ n}.

Finally, we construct a Cartesian product automaton

Cn = A×Mn = (PA × {q},∆, τ, (p0, q), FA × {q}),

where τ = {((p, q), r, n, (p′, q)) : (p, r,m, p′) ∈ τA and (q,m, q′) ∈ τn}. It can be shown that

Theorem 4. The weighted automaton Cn accepts exactly Qn(∞)

.

Here again, the user can practically specify an upper bound k on the preferential weight of the
tuples in each range that she is interested to exactly rank. Such a bound will serve as an accuracy

index. By computing query spheres up to Q(n(k)), we accurately rank the n-range tuples having a
weight, which is not more than n(k).

Finally, we can “inaccurately” derive the rest of n-range tuples, by computing the whole

CAns(Qn(∞)

,S,B). By “inaccurately” we mean that for the n-range tuples weighted more than n(k),
we only know that their weight is from n(k) to n + 1 exclusive.

7 Computing Query Spheres

7.1 Quantitative Case

In this section we present an algorithm, which for any given number k ∈ N constructs the k-th
sphere Qk of an ARPQ Q.

For this, we build a mask automaton Mk on the alphabet K = {0, 1, . . . , k}, which formally is
as follows: Mk = (Pk,K, τk, p0, Fk), where Pk = Fk = {p0, p1, . . . , pk}, and

τk = {(pi, n, pi+n) : 0 ≤ i ≤ k, and 0 ≤ n ≤ k − i}.

As an example, we give M3 in Fig. 1. The automaton Mk has a nice property. It captures all
the possible paths (unlabeled with respect to ∆) with weight equal to k. Formally, we can show that

pppp
3210

0 0 0 0

1 1 1

2 2
3

Fig. 1. Automaton M3

Theorem 5. Mk contains all the possible paths π with weight(π) ≤ k, and it does not contain any

path with weight greater than k.

Now by using Mk, we can extract from a weighted automaton A for Q all the transition paths
with a weight less or equal to k, giving so an effective procedure for computing the k-th sphere Q(k).

For this, let A = (PA,∆, τA, q0, FA) be a weighted automaton for Q. We construct a Cartesian
product automaton

Ck = A×Mk = (PA × Pk,∆, τ, (q0, p0), FA × Fk),

where τ = {((q, p), r, n, (q′, p′)) : (q, r, n, q′) ∈ τA and (p, n, p′) ∈ τk}. We can show that

Theorem 6. The weighted automaton Ck accepts exactly the k-th sphere Q(k) of query Q.

It can be easily seen that the size of automaton Mk is O(k2). Thus, the above algorithm for
computing Q(k) through Ck is in fact exponential in k, since k is represented in a binary format.
However, as we show by the next theorem, this is the best one could do unless P = NP . In fact, our
suggested incremental computation of the certain answer is a parametrically optimal procedure.

Theorem 7. Our algorithm for computing Q(k) is essentially optimal.

Proof. First we show the following lemma.

Lemma 1. Given k, to decide whether or not there exists (w, k) ∈ Q is NP-hard.

Proof. We show this via a reduction from the subset sum problem 13 of [9], which is as follows. Given
natural numbers n1, . . ., nm, and n, determine whether or not n = ni1+ . . . +nik

, for some {i1, . . . ,

ik} ⊆ {1, . . . , m}.
To decide this, we build a weighted query automaton A = ({p},∆, τ, p, {p}), where ∆ =

{r1, . . . , rm}, and τ = {(p, ri, ni, p) : 1 ≤ i ≤ m}. Observe that, for each word w ∈ ∆∗ there is
only one path spelling w in A.

Then to decide whether or not there exists {i1, . . . , ik} ⊆ {1, . . . , m}, for which n = ni1+ . . .

+nik
, is equivalent with deciding whether or not there exists a word w, such that (w, n) ∈ [A]. ⊓⊔

Let us now return to the proof of the theorem. Suppose we can generate Q(k) in polynomial time
in k. Now, let us take a source collection S = {(a, s, b)} with definition S = {w : (w, n) ∈ Q(k)}. It
is easy to see that (a, b, k) ∈ CAns(Q,S,R) iff there exists (w, k) ∈ Q. From this, and the above
lemma, it follows that it is unlikely to exist a polynomial in k algorithm for deciding whether or not
(a, b, k) ∈ CAns(Q,S,R). Finally, from all the above and Theorem 1, our claim follows. ⊓⊔

7.2 Qualitative Case

Here the mask automaton is polynomial in k, and it coincides with the mask automaton for com-
puting Qk∞

in the hybrid case (see previous section). The procedure for computing query spheres
is repeated as many times as the number of different annotations in the query automaton, i.e. the
number of repetitions does not depend on k. Hence, we conclude that to compute the certain answer
is polynomial in k for the qualitative case.

7.3 Hybrid Case

For computing a query sphere Qy, where y = n(k), for n, k ∈ N, we need to extract from a query
automaton all the paths (not necessary simple) with (a) any number of transitions weighted strictly
less than n, and (b) not more than k transitions weighted exactly n.

For this, we build a mask automaton Mn,k as follows:

Mn,k = (Pn,k, {0, 1, . . . , n}, τn,k, p0, Fn,k),

where Pn,k = Fn,k = {p0, p1, . . . , pk}, and

τn,k = {(pi,m, pi) : 0 ≤ m < n and 0 ≤ i ≤ k} ∪

{(pi, n, pi+1) : 0 ≤ i < k}.

As an example, we give M3,2 in Fig. 2. Formally, we can show that

pppp
3210

3 3 3

0,1,2 0,1,2 0,1,2 0,1,2

Fig. 2. Automaton M3,2

Theorem 8. Mk contains all the possible paths π with weight(π) ≤ n(k), and it does not contain

any path with weight greater than n(k).

Now by using Mn,k, similarly with the previous cases, we can extract from an automaton A
for Q all the transition paths weighted less or equal to n(k), giving so an effective procedure for

computing the Q(n(k)) query sphere.

Observe that the above algorithm for computing Q(n(k)) is polynomial in n, but unfortunately

exponential in k (due to a binary representation of n). It is open whether or not Q(n(k)) can be
computed in better time with respect to k.

8 Query Containment and Equivalence

In this section, we focus on query containment and equivalence, which are very important reasoning
services employeed in a multitude of applications.

For two queries Q1 and Q2 annotated over a preference semiring R, we say that Q1 is contained

in Q2, and denote this by Q1 ⊑ Q2, iff for each database DB , (a, b, x) ∈ Ans(Q1,DB ,R) implies
(a, b, y) ∈ Ans(Q2,DB ,R), and y � x. If both Q1 ⊑ Q2 and Q2 ⊑ Q1 are true, we say that Q1 is
equivalent with Q2 and write Q1 ≡ Q2. For the Boolean case, the above correspond to the classical
query containment and equivalence. This is because for B, we have T ≺ F .

On the other hand, we have the language-semiring theoretic notion of containment and equiva-
lence. Namely, we say that Q1 is L-smaller than Q2, and denote this by Q1 ⊑L Q2 iff (w, x) ∈ Q1

implies (w, y) ∈ Q2 and y � x. If both Q1 ⊑L Q2 and Q2 ⊑L Q1 are true, we say that Q1 is equivalent
with Q2 and write Q1 ≡L Q2. We are able to show the following characterization theorem.

Theorem 9. Q1 ⊑ Q2 (Q1 ≡ Q2) iff Q1 ⊑L Q2 (Q1 ≡L Q2).

Proof sketch. “If.” This direction is easy to verify.
“Only if.” Let (w, x) ∈ Q1, where w = r1 . . . rn. Construct a (“linear”) database DB as

a1
r1−→ a2

r2−→ . . .
rn−1
−→ an

rn−→ an+1. Clearly, (a1, an+1, x) ∈ Ans(Q1,DB ,R). Since in this (proof)
direction we assume Q1 ⊑ Q2, we have (a1, an+1, y) ∈ Ans(Q2,DB ,R) and y � x. From the
definition of query answers, and from the fact that there is only one path from a1 to an+1 in DB ,
and this path spells w, we get that (w, y) ∈ Q2 (where y � x). ⊓⊔

Unfortunately, to decide whether or not Q1 ⊑L Q2 is undecidable under quantitative prefer-
ence semantics. This follows from the undecidability of the equality of rational series in the tropical
semiring (cf. [19]). From this, Krob showed that the equivalence problem for distance automata is
undecidable. Recall from Section 6 that our annotated query automata for the quantitative case co-
incide with distance automata. [Equivalence of two distance automata A1 and A2, in our framework,
means exactly [A1] ≡L [A2].] Thus, we get undecidability of query containment and equivalence for
quantitative semantics.

The undecidability is true even for the class of distance automata with 0 and 1 weights only
(cf. [19]). On the other hand, it is easy to see that the quatitative semantics coincide with hybrid
semantics for queries with 0 and 1 annotations only. Thus, we get undecidability for the containment
and equivalence of queries under hybrid semantics as well.

Fortunately, we are able to decide query containment for the case of qualitative preferences. To
see this, we give first the following general theorem, which holds for all the semirings with the next

element property.

Theorem 10. Let Q1 and Q2 be two queries annotated over a semiring R, which posseses the next

element property. Then, Q1 ⊑L Q2 iff Q1

1 ⊑L Q1

2 and Q
y
1 − Qx

1 ⊑L Q
y
2 − Qx

2 , for each element x

of R, and where y is the next element after x.

It is easy to verify the above theorem. Observe that Q1

1 , Q1

2 , Q
y
1 − Qx

1 and Q
y
2 − Qx

2 are sets of
word-weight pairs, where the weight is exactly 1 and y respectively. For deciding their containment
we can just test for the containment of the pure regular languages we obtain if we ignore the weight
of the words.

Notice however, that the above theorem does not give a decision procedure for query containment
under quantitative and hybrid preference semantics. This is because the number of query spheres
might be infinite for these semantics.

Interestingly, the above theorem gives an effective procedure for deciding query containment
under qualitative semantics. This is true because under such semantics, the number of query spheres
is finite; this number is bounded by the number of transitions in the query automaton.

8.1 Queries Represented by Deterministic Automata

Let us first turn the attention to the containment of queries under quantitative preference semantics.
Although as we explained above, in general, the equivalent problem of containment (and equivalence)
for distance automata is undecidable, as Hashiguchi et. al. in [15] show, the problem becomes de-
cidable for the class of deterministic (w.r.t. ∆) automata. What they show can be translated as the
fact that for deterministic automata, [A1] ⊑L [A1] iff for all words w on ∆ with length at most
2 × |P1| × |P2|, where |P1| and |P2| are the number of states for A1 and A2 respectively, we have
that (w, x) ∈ [A1] and (w, y) ∈ [A2] for y � x.

This surely gives a procedure for deciding the containment of queries represented by deterministic
annotated automata. Such queries are in fact an important class because as other related work show
(cf. [3] and [18]) large classes of weighted NFA’s can succesfully be determinized.

Now, the complexity of deciding the containment, by naively testing for each word shorter or
equal to 2×|P1|×|P2|, is exponential in the size of query automata (Hashiguchi et. al. do not provide
a more efficient algorithm).

However, based on our Theorem 10 and the bound by Hashiguchi et. al., we can easily see that
for Q1 and Q2 (under quantitative preference semantics) represented by deterministic annotated
automata, deciding the Q1 ⊑ Q2 containment amounts to testing Q0

1 ⊑L Q0
2, Q1

1 − Q0
1 ⊑L Q1

2 − Q0
2,

. . ., Q
2×|P1|×|P2|+1
1 − Q

2×|P1|×|P2|
1 ⊑L Q

2×|P1|×|P2|+1
2 − Q

2×|P1|×|P2|
2 .

Fortunately, if a query Q is represented by a deterministic automaton A, then each query sphere,
generated by our mask automaton of the previous section, is deterministic as well. To see this,
suppose we are computing sphere Q(k) using mask automaton Mk. Let (p1, r, j, p2), where j ≤ k,
be a transition in A. This transition will match the j-labeled transitions in Mk. Recall that Mk is
deterministic with respect to its (number) alphabet. Let (q1, j, q2) be a j-labeled transition in Mk.
Now, in Q(k) automaton, we will have only one r-labeled transition outgoing from state (p1, q1)
because there is only one r-labeled transition outgoing from p1 in A, and there is only one j-labeled
transition outgoing from q1 in Mk. Similar reasoning applies for each other state of Qk automaton.

The importance of having deterministic (with respect to ∆) query spheres is that the above
sphere differences can be computed in polynomial time. Moreover the differences themselves will be
represented by deterministic automata, and thus, their containments can be checked in polynomial
time as well. Based on all the above, we formally state the following theorem.

Theorem 11. Deciding containment of deterministic queries under quantitative preference seman-

tics can be done in PTIME.

Regarding the containment of queries under hybrid preference semantics, we can also show that
for the class of deterministic queries, the problem is decidable in PTIME. For this, it can be verified
that deciding Q1 ⊑ Q2 under hybrid preference semantics amounts to deciding, under quantitative

preference semantics, the query containments: Q0
1 ⊑ Q0

2, Q1∞

1 ⊑ Q1∞

2 , . . ., Qn∞

1 ⊑ Qn∞

2 , where
n is the greatest preference weight that appears in Q1 and Q2. From Section 6, we know how to
obtain generalized query spheres Qn∞

through the Mn mask automata. Such mask automata are
deterministic with respect to their (number) alphabet. Hence, similarly as above, we are able to
formally state our last theorem regarding deterministic queries under hybrid preference semantics.

Theorem 12. Deciding containment of deterministic queries under hybrid preference semantics can

be done in PTIME.

References

1. Abiteboul S., P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistructured Data and

XML. Morgan Kaufmann, San Francisco, CA, 1999.
2. Aho A., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-

Wesley, Reading, MA, 1974.
3. Cyril Allauzen, Mehryar Mohri. An optimal pre-determinization algorithm for weighted transducers.

Theoretical Computer Science 328 (1–2) : 3–18, 2004.
4. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. Answering Regular Path Queries Using

Views. Proc. of ICDE ’00.
5. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. View-Based Query Processing and Constraint

Satisfaction. Proc. of LICS ’00.
6. Calvanese D., G. Giacomo, M. Lenzerini, and M. Y. Vardi. View-based Query Processing: On the

Relationship between Rewriting, Answering and Losslessness. Proc. of ICDT ’05.
7. Chomicki J. Preference formulas in relational queries. ACM Trans. Database Syst. 28 (4) : 427–466, 2003.
8. Flesca S., F. Furfaro, and S. Greco. Weighted Path Queries on Web Data. Proc. of WebDB ’01.

9. Garey M. R., and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Freeman, NY, 1979.
10. Grahne G., and A. Thomo. Query Containment and Rewriting Using Views for Regular Path Queries

under Constraints. Proc. of PODS ’03.
11. Grahne, G., and Thomo, A. Query Answering and Containment for Regular Path Queries under Dis-

tortions. Proc. of FoIKS ’04.
12. Hashiguchi K. Limitedness Theorem on Finite Automata with Distance Functions.

Journal of Computer and System Sciences 24 (2) : 233–244, 1982.
13. Hashiguchi K. Improved Limitedness Theorems on Finite Automata with Distance Functions. Theoretical

Computer Science 72 (1) : 27–38, 1990.
14. Hashiguchi K. New Upper Bounds to the Limitedness of Distance Automata. Theoretical Computer

Science 233 (1-2) : 19–32, 2000.
15. Hashiguchi K., K. Ishiguro, and S. Jimbo. Finitely Ambiguous Finance Automata. International Journal

of Algebra and Computation 12 (3) : 445–461, 2002.
16. Hopcroft J. E., and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, MA, 1979.
17. Kiesling W., B. Hafenrichter, S. Fischer, and S. Holland. Preference XPATH – A query language for

E-commerce. Proc. of the 5th Int’l Conf. Wirtschaftsinformatik, Augsburg, Germany, 2001.
18. Kirsten D., and I. Mäurer. On the Determinization of Weighted Automata. Journal of Automata, Lan-

guages and Combinatorics 10 (2–3) : 287–312, 2005.
19. Krob D. The Equality Problem for Rational Series with Multiplicities in the Tropical Semiring is Un-

decidable. International Journal of Algebra and Computation 4 (1) : 405–425, 1994.
20. Lenzerini M. Data Integration: A Theoretical Perspective. Proc. of PODS ’02.
21. Leung H. Limitedness Theorem on Finite Automata with Distance Functions: An Algebraic Proof.

Theoretical Computer Science 81 (1) : 137–145, 1991.
22. Ruchi A. A Framework for Expressing Prioritized Constraints Using Infinitesimal Logic Master Thesis

University of Victoria, BC, 2005.
23. Simon I. On Semigroups of Matrices over the Tropical Semiring. Informatique Theorique et Applications

28 (3-4) : 277–294, 1994.
24. Stefanescu D. C., Thomo A, and Thomo L. Distributed evaluation of generalized path queries. Proc. of

SAC ’05.
25. Stefanescu D. C., A. Thomo. Enhanced Regular Path Queries on Semistructured Databases. QLQP ’05.
26. Ullman J. D. Principles of data and knowledge bases, Vol. II: The new technologies. Computer Science

Press, 1989.
27. Vardi. M. Y. A Call to Regularity. Proc. PCK50 - Principles of Computing & Knowledge, Paris C.

Kanellakis Memorial Workshop ’03, pp. 11.
28. von Wright G. H. The logic of preference. Edinburgh University Press, 1963.

