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Abstract

A graph is embeddable on a surface S if it can be drawn on S with no crossing

edges. A topological obstruction for a surface S is a graph G that does not embed

on S, but for all edges e in G, G − e embeds on S. A minor order obstruction has

the additional property that, for all edges e, G · e (G contract e) also embeds on

S. Solving the well-studied problem of finding a complete set of obstructions for

the torus is facilitated by having a large database of torus obstructions. With this

in mind, we have designed a new exponential torus embedding algorithm inspired by

Demoucron’s O(n2) planar embedding algorithm. Although theoretically practical al-

gorithms for torus embedding exist, they have not yet been successfully implemented.

Our implementation of our new algorithm is faster than implementations of previous

exponential algorithms that have been used to find torus obstructions.
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Chapter 1

Introduction

Graph theory can be used to model many tangible or abstract problems that involve

connections between objects. In chemistry, for example, graphs have been used to

model carbon molecules known as Fullerenes; in sociology, a graph can be used to

model patterns of relationships within a population; and in electronic engineering,

graphs model electronic circuitry. Whatever the application, it is frequently visually

appealing and useful to see a drawing of the graph model that has few or, preferably,

no edges that cross.

Graphs that can be drawn, or embedded, on the plane with no crossing edges are

not only visually appealing: there are graph theory problems which are hard in the

general case but have efficient solutions for planar graphs. Further, the interest in

graph embedding is not limited to the plane. There are infinitely many surfaces for

which we can find the “embeddable” graphs and knowledge of these graphs has the

potential to further research in the field. In this thesis, we focus on the surface known

as the torus, which is shaped like a doughnut.

Several efficient and practical algorithms for embedding graphs on the plane and

at least one for the projective plane have been implemented. For the torus, however,

although theoretically efficient algorithms exist, they are complex and as of yet only

exponential algorithms which have practical limitations have been completely imple-

mented. We introduce a new algorithm for embedding graphs on the torus that has

been implemented and tested in a variety of ways. Although this new algorithm has

exponential running time in the worst case, in comparison to previous algorithms it

is conceptually simpler as well as faster in practice. It is feasible that this algorithm
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and the insights gained during its development will play a role in finally concluding

the search for all of the torus obstructions - a well-studied yet still open problem -

which would be a major breakthrough in topological graph theory.

1.1 Overview of Thesis

In Chapter 2 we provide definitions and concepts necessary for understanding

the material and we present a more in-depth history of the relevant and related

research that motivated this work. We introduce a generic embedding framework for

embedding graphs on surfaces in Chapter 3. The new torus embedding algorithm

that is the main subject of this thesis was inspired by the quadratic algorithm of

Demoucron, Malgrange, and Pertuiset for embedding graphs on the plane [13]. Also

in chapter 3, therefore, as a preface to the presentation of our algorithm, we explain

how their algorithm fits into the generic framework.

In Chapter 4 we discuss the details of our new torus embedding algorithm, why it

is more complex than the algorithm of Demoucron, Malgrange, and Pertuiset, why it

has exponential instead of quadratic running time, and why it is correct. Chapter 5

presents timing comparisons between our new algorithm and a previous exponential

algorithm that show significant improvements. Finally, Chapter 6 concludes this

thesis by outlining possible approaches to enhancing our algorithm and using it to

find all of the torus obstructions.
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Chapter 2

Background

Elementary concepts and definitions in graph theory and their proofs can be found

in introductory texts by West [35] and Bondy and Murty [7]. Archdeacon’s survey

of topological graph theory gives an excellent introduction to the study of graph

embeddings [3]. More in-depth discussions can be found in Henle’s book A Combi-

natorial Introduction to Topology [18] and in Mohar’s and Thomassen’s book Graphs

on Surfaces [26]. Here we present basic definitions and key concepts pertinent to

understanding the material presented in this thesis followed by a history of related

and relevant work that provided motivation for this research.

2.1 Basic Graph Theory Definitions

A graph G = {V, E} consists of a finite set V of vertices and a finite set E of

edges where each edge e = (u, v) of E is associated with an unordered pair of vertices

u and v from V . Vertices u and v are the endpoints of edge e = (u, v) and edge e is

incident to a vertex u if and only if u is an endpoint of e. The neighbours of a vertex

u are the vertices v such that (u, v) ∈ E. The degree of a vertex u in a graph is the

number of edges that are incident to u. The minimum degree of a graph G is the

minimum among the degrees of all of the vertices of G. An r-regular graph has only

vertices with degree r. For this thesis, we consider only simple graphs which do not

have multiple edges (more than one edge with the same pair of endpoints) or loops

(edges of the form (u, u)). For conciseness throughout this thesis we let n denote the

number of vertices, or the order, of a graph and m denote the number of edges, or the

size, of a graph. When discussing running times we do so in terms of n, the number
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of vertices. Thus O(n) is linear time, O(n2) is quadratic time, and so on.

To delete a vertex v from a graph G (denoted G− v) is to remove v and all edges

incident to v from G. To delete an edge e = (u, v) from a graph G (denoted G − e)

is to remove e from G. To contract an edge e = (u, v) in a graph G (denoted G · e)

is to remove e from G, replace vertices u and v by a single vertex w, and replace any

edges (u, x) incident to u and (v, y) incident to v by (w, x) and (w, y) respectively.

Contracting an edge can create multiple copies of an edge (w, x) if u and v were both

adjacent to some vertex x. Since we are only interested in simple graphs any multiple

edges are removed when an edge is contracted.

Subdividing an edge (u, v) of a graph means replacing (u, v) by a vertex w and

two edges (u, w) and (w, v). A graph H is homeomorphic to a graph G if H can be

obtained from G by a series of edge subdivisions; graph H is a homeomorph of graph

G. A graph H = {V ′, E ′} is a subgraph of a graph G = {V, E} if V ′ ⊆ V and E ′ ⊆ E.

A complete graph on n vertices, Kn, is a graph G = {V, E} with |V | = n and

E = {(u, v)|u, v ∈ V and u 6= v}. A bipartite graph G = {V ∪ V ′, E} is a graph

whose vertices can be partitioned into two sets V and V ′ such that there are no

edges between vertices in the same set. A complete bipartite graph on x + y vertices,

Kx,y, is a bipartite graph G = {V ∪ V ′, E} such that |V | = x and |V ′| = y and

E = {(u, v)|u ∈ V and v ∈ V ′}. This thesis often refers to the presence in a graph

G of a subgraph H homeomorphic to K5 or K3,3. The vertices of H that have degree

greater than or equal to three are referred to as main vertices of H and the other

vertices are referred to as non-main vertices of H . Figures 2.1 and 2.2 show K5 and

K3,3, respectively, and a graph homeomorphic to each.

A walk in a graph G = {V, E} is a finite alternating sequence of vertices and edges

of the form

v0, (v0, v1), v1, (v1, v2), . . . , vk−2, (vk−2, vk−1), vk−1



5

Figure 2.1: K5, the complete graph on 5 vertices, is shown on the left. On the right

is a graph homeomorphic to K5.

Figure 2.2: K3,3, the complete bipartite graph on 3 + 3 vertices, is shown on the left.

On the right is a graph homeomorphic to K3,3. The vertices in one set have been

shaded and in the other they remain white.

where v0, v1, . . . , vk−1 ∈ V and (v0, v1), (v1, v2), . . . , (vk−2, vk−1) ∈ E; we say that such

a walk is between vertices v0 and vk−1, and v0 and vk−1 are the endpoints of the walk.

A closed walk is a walk in which v0 = vk−1. A path in G is a walk with no repeated

vertices and a cycle in G is a closed walk with no repeated vertices (except v0 = vk−1).

A graph G is a path of length n if it consists of n vertices v0, v1, . . . , vn−1 and the

edges (v0, v1), (v1, v2), . . . , (vn−2, vn−1). A graph G is a cycle of length n if it consists

of n vertices v0, v1, . . . , vn−1 and the edges (v0, v1), (v1, v2), . . . , (vn−2, vn−1), (vn−1, v0).

A graph G is connected if there is a path between every pair of vertices in G. A

2-vertex cut, {a.b}, in a graph G is a pair of vertices a and b from G such that if

we remove vertices a and b and all edges incident to a and b from G, the resulting

graph is not connected. A connected component of a graph G is a maximal connected
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subgraph of G.

A bridge B with respect to a subgraph H of a graph G is either

Type 1: a connected component C of G − H along with the edges (u, v) such that

u ∈ C and v ∈ H and the vertices v ∈ H that are endpoints of these edges, or

Type 2: an edge (u, v) and its endpoints where (u, v) ∈ G and u ∈ H and v ∈ H but

(u, v) /∈ H .

The vertices that are in both B and H are called attachment vertices of B. The

vertices that are in B but not in H (i.e. the vertices in B that are not attachment

vertices) are called internal vertices of B. A bisecting path in a bridge B is a path P

that contains only vertices in B and v ∈ P is an attachment vertex of B if and only

if v is an endpoint of P .

2.2 Graphs and Surfaces

Topologically, a surface can be uniquely defined by its genus (pl. genera) (the

number of handles in the orientable case or crosscaps in the nonorientable case - see

[26] for the definitions of these terms) and whether it is orientable or non-orientable

(whether or not it has a well-defined sense of clockwise). The orientable surfaces are

the plane, or equivalently the sphere, which is the only surface of genus zero, and the

k-handled-torus (k > 0), which has genus k. The 1-handled torus is usually referred

to simply as the torus and can be envisioned as a doughnut-shaped surface. The non-

orientable surfaces of genus one and two are called the projective plane (equivalent to

a disk with antipodal points identified) and the Klein bottle respectively.

2.2.1 Embedding Graphs on Surfaces

A graph G is embeddable on a surface S if it can be drawn on S such that no pair

of edges of G cross. Graphs that are embeddable on the plane (or sphere), projective
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plane, and torus are called planar, projective planar and toroidal respectively. An

embedding of a graph on a surface S is a description of how it can be embedded on

S. An orientable combinatorial embedding for a graph G on an orientable surface S

is an adjacency list for G with the neighbours of each vertex ordered cyclically based

on the embedding of G on S. Additional information is required for a non-orientable

combinatorial embedding; we omit description of it here as it is not relevant to the

subject of this thesis.

For the purpose of graph embedding, we consider two combinatorial embeddings

to be equivalent if one can be transformed into the other by either

• a cyclic rotation of the adjacency list for any vertex or

• the reversal of the adjacency lists for all vertices.

Thus, in Figure 2.3, the three combinatorial embeddings of K4 on the plane are all

equivalent. Notice that the first two embeddings in the figure have identical pictures,

but the third is a reflection of the first two about the edge (0, 3).

0: 1 3 2

1: 0 2 3

2: 0 3 1

3: 0 1 2

0: 3 2 1

1: 0 2 3

2: 0 3 1

3: 2 0 1

0: 1 2 3

1: 3 2 0

2: 1 3 0

3: 1 0 2

2 3

0 1

2 3

0 1

1

20

3

Figure 2.3: Three equivalent combinatorial embeddings of K4 on the plane.

The genus of a combinatorial embedding can be defined combinatorially by the

formula in Theorem 2.2.1, commonly known as Euler’s formula.
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Theorem 2.2.1. [18] For an orientable surface S, the genus of an orientable combi-

natorial embedding on S of a connected graph with n vertices, m edges, and f faces

is equal to
2 − n + m − f

2
.

Topologically, the orientable (non-orientable) genus of a graph G is the minimum

of the genera of the orientable (non-orientable) surfaces on which G is embeddable.

As graph theorists rather than topologists, we find it more useful to define the genus

of a graph combinatorially. The orientable (non-orientable) genus of a graph G is the

minimum of the genera of the orientable (non-orientable) combinatorial embeddings

of G.

For the remainder of this thesis we refer only to orientable surfaces unless other-

wise specified. Thus, a combinatorial embedding will be an orientable combinatorial

embedding and the genus of a graph or an embedding will be its orientable genus.

2.2.2 Drawing Graphs on the Torus

Since this thesis focuses on embedding graphs on the torus, and figures will be

used as an aid to understanding throughout, it is useful to explain a simple way to

draw graphs embedded on the torus on paper. Figure 2.4 shows the process by which

we transform the torus from a 3-dimensional doughnut shape to a 2-dimensional

rectangle shape. We first cut vertically through the torus to form a cylinder and then

cut horizontally through the cylinder to form a rectangle. As shown by the arrows on

the arcs of the rectangle, points on the left- and right-hand arcs are identified, and

points on the top and bottom arcs are identified. So when a graph is drawn on the

rectangle representation of the torus, an edge which exits the rectangle through one

arc, enters at the corresponding point on the opposite arc.
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Figure 2.4: Cutting the torus to simplify drawings of graphs embedded on the torus.

Figure 2.5 shows a toroidal graph K3,3 and one of its embeddings drawn on the

rectangular representation of the torus. Note that if an edge leaves at a corner of the

rectangle, it returns at the diagonally opposite corner.

Henle’s book A Combinatorial Introduction to Topology describes how to draw

pictures of graphs on orientable and non-orientable surfaces of arbitrary genus [18,

pages 109 & 112].

2.2.3 Faces and How to Find Them

Given a surface S and an embedding of a graph G on S, a face of the embedding is a

closed walk of G that bounds a maximal contiguous region of S. More formally, given
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Figure 2.5: K3,3 and one of its embeddings on the torus.

a combinatorial embedding Π of graph G, let Πv(u) be the vertex which follows vertex

u in the cyclic list of neighbours for vertex v. Then a face of Π is a minimal closed

walk, v0, (v0, v1), v1, (v1, v2), . . . , (vk−1, v0), such that Πvi
(v(i−1) mod k) = v(i+1) mod k

for i = 0 . . . k − 1.

Figure 2.6 shows an embedding of K3,3 on the torus (a different embedding from

that of Figure 2.5), with the vertices labelled arbitrarily, and the three faces of the

embedding. The ten-vertex face illustrates why we must define a face as a closed walk

and not a cycle: vertices 1, 3, 4, and 6 are repeated on this face. We call the faces

with repeated vertices ugly faces.

A face f is admissible for a bridge B if all of the attachment vertices of B are in

f . A bridge B is embeddable in a face f if

• f is admissible for B, and

• there is a way to draw B on the contiguous region bounded by f such that no

two edges intersect.

Two bridges B1 and B2 hinder each other with respect to a face f if

• f is admissible for B1 and B2, and
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32
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Figure 2.6: An embedding of K3,3 and its three faces.

• it is not possible to draw both B1 and B2 on the contiguous region bounded by

f such that no two edges intersect.

In other words, B1 and B2 hinder each other with respect to f if they are not em-

beddable in f at the same time.

If f is an ugly face, the choice of which copies of the attachment vertices of bridge

B can be crucial to B being embeddable in f . For example, suppose a face f has

a repeated vertex v and is admissible for a bridge B. If v is one of the attachment

vertices of B, it is possible that B must connect to both copies of v in order to be

embeddable in f . Figure 2.7 shows a bridge that is not embeddable in face f unless

both copies of two repeated vertices of f are used (f is Face 1 of Figure 2.6).

There is a simple algorithm for finding the faces of a combinatorial embedding.

First, since each edge should be used once in each direction, assign two records, [a, b]
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ff

6

3

4

64
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1

1

6
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64
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1

Figure 2.7: Using repeated vertices to embed a bridge in a face.

and [b, a], to each edge (a, b) in G and initialize these records to be unvisited. Then,

as long as at least one unvisited record remains, choose some unvisited record [a, b]

and walk around the face that begins with that record as follows. Until a visited

record is reached (at which point we have finished with this face), proceed to the

next record, [b, c], where c = Πb(a), marking each record as visited along the way.

Algorithm 2.1 gives pseudocode for the face walking algorithm and Myrvold and Roth

provide a more in depth discussion of this algorithm [32] including how to modify it

for non-orientable surfaces.

2.2.4 Obstructions

A topological obstruction for a surface S is a graph G with minimum degree three

that is not embeddable on S but for all edges e of G, G− e (G with edge e removed)

is embeddable on S. A minor order obstruction for a surface S is a graph G that is

a topological obstruction for S with the additional property that for all edges e of G,

G · e (G with edge e contracted) is embeddable on S.

Suppose we are given an algorithm Torus Embed(graph G) that answers the ques-

tion “Is G embeddable on the torus?”. We can easily design another algorithm

Torus Obstruction(graph G) to answer the question “Is G a torus obstruction?”.
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Algorithm 2.1 FaceWalk(graph G, combinatorial embedding Π(G))

1: Let f = 0 be the number of faces seen so far.
2: for all edges (a, b) in G do

3: Create two records [a, b] and [b, a].
4: end for

5: for all Records [a, b] do

6: if [a, b] is not visited then

7: f = f + 1
8: while [a, b] is not visited do

9: Mark [a, b] as visited.
10: Add [a, b] to face f .
11: Let c = Πb(a).
12: Set a = b and b = c.
13: end while

14: end if

15: end for

First, if G is toroidal then it is obviously not a torus obstruction. Otherwise if G− e

is toroidal for every edge e then G is a topological torus obstruction. Further, if G · e

is also toroidal for every edge e then G is a minor order torus obstruction. Algorithm

2.2 gives simple pseudocode for this algorithm, assuming that Torus Embed(graph

G) returns true if G is toroidal and false if G is not toroidal.

2.3 History and Motivation

Many complex linear time algorithms for embedding graphs on the plane exist,

including those of Hopcroft and Tarjan (this was the first, developed in 1974) [19],

Booth and Lueker [8], Fraysseix and Rosentiehl [12], Williamson [36, 37], and Boyer

and Myrvold [9]. Less complex are the O(n2) algorithms of Klotz [23] and of De-

moucron, Malgrange, and Pertuiset [13]. The latter of these provided the inspiration

for the torus embedding algorithm presented in this thesis. For embedding graphs

on the projective plane, there is a complex linear time algorithm designed by Mohar

[25], and a less complex O(n2) algorithm designed and implemented by Myrvold and
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Algorithm 2.2 Torus Obstruction(graph G)

1: if G has minimum degree less than three then

2: Halt: G has minimum degree less than three and is therefore not a torus ob-
struction.

3: end if

4: if Torus Embed(G) returns true then

5: Halt: G is toroidal and therefore not a torus obstruction.
6: end if

7: for all edges e in G do

8: if Torus Embed(G − e) returns false then

9: Halt: G is not a torus obstruction because G − e is not toroidal.
10: end if

11: end for

12: for all edges e in G do

13: if Torus Embed(G · e) returns false then

14: Halt: G is a topological obstruction but not a minor order obstruction be-
cause G · e is not toroidal.

15: end if

16: end for

17: Halt: G is a minor order obstruction.

Roth [32] .

For the torus, there currently is no known implementation of an efficient embed-

ding algorithm. Mohar proposed a linear time algorithm for embedding graphs on

the torus [21] and Juvan and Mohar simplified the linear time algorithm to create an

O(n3) variant [22]. Neither of these algorithms has yet been successfully implemented

and it is possible that their complexity will be prohibitive to their practicality [27].

An exponential torus embedding algorithm was developed by Myrvold and Neufeld

[30, 29] and enhanced by Chambers [10], and is practical for small graphs. Filotti

also presented a specialized algorithm for embedding only 3-regular graphs on the

torus [14] which he claimed to have polynomial running time, but Myrvold and Ko-

cay proved that it is incorrect [28]. Myrvold and Kocay also discuss critical design

issues in finding a polynomial time algorithm for embedding graphs on the torus [28].
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In addition to the graph embedding problem in general, the research in this thesis

was inspired by the problem of finding the complete set of obstructions for surfaces,

and, more specifically, the problem of finding the complete set of torus obstructions.

Kuratowski proved that there are there are two (minor order [34]) obstructions for

the plane, K5 and K3,3 [24], and gave Theorem 2.3.1, now known as Kuratowski’s

Theorem.

Theorem 2.3.1. [24, 34] Kuratowski’s Theorem A graph is planar if and only if

it does not contain a subgraph homeomorphic to K5 or K3,3.

That the number of obstructions is finite for any surface of fixed genus was proved

by Bodendiek and Wagner for orientable surfaces [6], by Archdeacon and Huneke

for non-orientable surfaces [2], and independently by Robertson and Seymour for

both orientable and non-orientable surfaces [31]. This fact leads to Theorem 2.3.2, a

generalization of Kuratowski’s Theorem to surfaces other than the plane.

Theorem 2.3.2. [6, 2, 31] Generalization of Kuratowski’s Theorem A graph is

embeddable on a surface S if and only if it does not contain a subgraph homeomorphic

to one of a finite number of obstructions for S.

To date the only surface other than the plane for which the complete obstruction

set is known is the projective plane; Glover, Huneke, and Wang listed 103 topolog-

ical obstructions and 35 minor-order obstructions for the projective plane [17] and

Archdeacon proved that this is a complete list [1]. Archdeacon also found the com-

plete set of 21 3-regular topological obstructions for the spindle, the surface formed

by identifying two points on the sphere [4].

Finding the complete obstruction set for the torus is a natural next step in this

field of research. The exponential torus embedding algorithm of Myrvold and Neufeld

is practical enough to have found all torus obstructions on up to ten vertices by ex-

haustive search, as well as some larger ones [30, 29]. Almost ten years later, Chambers
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used this algorithm to find all torus obstructions on up to eleven vertices and all 3-

regular torus obstructions on up to 24 vertices by exhaustive search. He also used

a “Split-Delete” approach on known small obstructions to generate a collection of

larger obstructions [10]. Further, Juvan found the complete set of 270 projective pla-

nar torus obstructions [20] and Chambers, Gagarin and Myrvold found the complete

set of torus obstructions which do not contain a subgraph homeomorphic to K3,3 [11].

Obviously the sets of obstructions found by researchers overlap in some cases, but

each provided significant contributions to the knowledge base about this problem. In

all, 239,451 topological obstructions have been found for the torus of which 16,683

are minor order obstructions.

Completing the search for torus obstructions would have important theoretical and

algorithmic implications. The known obstruction sets for the plane and projective

plane have been used in proofs of theorems in topological graph theory. The complete

set of torus obstructions could yield similar types of results. As a side-effect, it is

hoped that the complete set of torus obstructions and the insights gained in finding

it will provide inspiration for a faster and simpler torus embedding algorithm. Such

an algorithm could be verified by ensuring that what it purports to be a minimal

non-toroidal subgraph is in fact in the database of torus obstructions. Having a fast

and correct torus embedding algorithm, in turn, has algorithmic implications as there

are computationally intractable problems that can be solved in polynomial time for

toroidal graphs (e.g. [16, 33]).
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Chapter 3

The Generic and Planar Embedding Algorithms

In this chapter, we first present a generic backtracking approach for embedding graphs

on orientable surfaces. Then, we describe the modifications to this generic algorithm

made by Demoucron, Malgrange, and Pertuiset [13] to create a linear time planar

embedding algorithm which was the inspiration for our new torus embedding algo-

rithm.

3.1 Generic Embedding Algorithm on an Orientable Surface

Algorithms 3.1a and 3.1b present pseudocode for a generic graph embedding al-

gorithm that can be used to find out if any graph G of genus greater than or equal

to g can be embedded on an orientable surface S of genus g. The algorithm begins

by finding a subgraph H of G such that all embeddings of H on S divide S into faces

that are homeomorphic to a planar disk or, in other words, faces that do not have

holes. One possible choice for H when embedding a graph on a surface of genus g > 0

is an obstruction to a surface of genus g − 1.

The algorithm maintains an an embedding Π(G′) of a subgraph G′ of G. For each

embedding Π(H) of H , it initializes G′ = H and Π(G′) = Π(H) and then finds the

faces of Π(G′) and the bridges of G with respect to G′. If there are no bridges then

the algorithm must have discovered an embedding of G on S. If there is a bridge

with no admissible faces, the algorithm must backtrack as Π(G′) cannot lead to an

embedding of G. Otherwise, the algorithm chooses a bisecting path P from some

bridge B and, for each admissible face f for B, embeds P across f in all possible

ways (recall from section 2.2.3 that f may have repeated vertices). For each way of
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embedding P , we recursively try to embed the rest of G.

Algorithm 3.1a StartGeneric(graph G, surface S, genus g(S))

1: if G has genus < g(S) then

2: Halt: an embedding of G on a surface with genus < g(S) is also an embedding
of G on S.

3: end if

4: Choose a subgraph H of G that always embeds on S by dividing S into faces
homeomorphic to a planar disk.

5: for all labelled embeddings Π(H) of H do

6: Generic(G, H , Π(H))
7: end for

Algorithm 3.1b Generic(graph G, graph G′, embedding Π(G′))

1: Use Algorithm 2.1 to find the faces of Π(G′).
2: Find the bridges of G with respect to G′.
3: if there are no bridges remaining then

4: Halt: we have an embedding of G.
5: else if there is a bridge with no admissible faces then

6: Backtrack: Π(G′) cannot lead to an embedding of G.
7: end if

8: Choose a bridge B of G.
9: for all admissible faces f for B do

10: Choose a bisecting path P of B.
11: for all ways of embedding P in f do

12: Embed P in Π(G′).
13: Generic(G, G′, Π(G′))
14: Remove P from Π(G′).
15: end for

16: end for

3.2 Demoucron’s Planar Embedding Algorithm

The planar embedding algorithm of Demoucron, Malgrange and Pertuiset [13]

(which we hereafter refer to as Demoucron’s algorithm) inspired the development of

our new torus embedding algorithm. Thus, explaining how it differentiates from the
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generic algorithm will likely ease understanding of our new torus embedding algorithm

in the next chapter.

First, if a graph has no subgraphs that are cycles, then it is obviously planar. A

graph that is a cycle has exactly two equivalent embeddings on the plane. So De-

moucron’s algorithm first finds a subgraph H of G that is a cycle and then proceeds

to embed the bridges of G as described for the generic algorithm with the following

modification. The authors showed that as long as bridges that have only one admis-

sible face are chosen first, it is sufficient to choose a single admissible face f for B

and embed a bisecting path from B in f without trying the other admissible faces

for B. Demoucron’s algorithm is given in pseudocode in Algorithms 3.2a and 3.2b.

Algorithm 3.2a StartDemoucron(graph G)

1: if G has no subgraphs that are cycles then

2: Halt: G is obviously planar.
3: end if

4: Choose a subgraph H of G that is a cycle.
5: Let Π(H) be an embedding of H on the plane.
6: Demoucron(G, H , Π(H))

Algorithm 3.2b Demoucron(graph G, graph G′, embedding Π(G′))

1: Use Algorithm 2.1 to find the faces of Π(G′).
2: Find the bridges of G with respect to G′.
3: if there are no bridges remaining then

4: Halt: we have an embedding of G.
5: else if there is a bridge with no admissible faces then

6: Halt: G is not planar.
7: end if

8: Choose a bridge B of G with a minimum number of admissible faces.
9: Choose a bisecting path P of B.

10: Embed P in Π(G′).
11: Demoucron(G, G′, Π(G′))

For ease of understanding and consistency, Algorithm 3.3 recomputes the faces
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and bridges from scratch at each recursive call. It is easy, however, to update both of

these each time Π(G′) is modified - only the chosen bridge B and the face in which the

path P is embedded change. If the latter is incorporated, we need only use the O(n2)

face walking algorithm once to find the faces of the initial embedding of H . The

algorithm would then have O(m) or, equivalently, O(n2) running time. Obviously

it is not necessary for Demoucron’s algorithm to be recursive; Algorithm 3.3 gives

non-recursive, O(n2) pseudocode for Demoucron’s algorithm.

Algorithm 3.3 Demoucron NR(graph G)

1: if G has no subgraphs that are cycles then

2: Halt: G is obviously planar.
3: end if

4: Choose a subgraph G′ of G that is a cycle.
5: Let Π(G′) be an embedding of G′ on the plane.
6: Use Algorithm 2.1 to find the faces of Π(G′).
7: Find the bridges of G with respect to G′.
8: while there are bridges remaining do

9: if there is a bridge with no admissible faces then

10: Halt: G is not planar.
11: end if

12: Choose a bridge B of G with a minimum number of admissible faces.
13: Choose a bisecting path P of B.
14: Embed P in Π(G′), updating the bridges and faces.
15: end while

16: Halt: we have an embedding of G.
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Chapter 4

The New Torus Embedding Algorithm

As does Demoucron’s planar embedding algorithm, our new torus embedding algo-

rithm follows the simple outline of the generic embedding framework. In this chapter

we discuss the details and ways to further modify the generic framework to improve

efficiency. Then we provide pseudocode for the algorithm and explain why it is cor-

rect.

4.1 Choice of Subgraph

First, if a graph is planar then it is obviously also toroidal and a planar embedding

of such a graph is also an embedding on the torus. We can use a planar embedding

algorithm such as Demoucron’s algorithm described in Section 3.2 to find out if a

graph is planar and, if it is, find a planar embedding.

Recall from Theorem 2.3.1 that every non-planar graph (and thus every graph

our torus embedding algorithm examines) must contain a subgraph homeomorphic

to either K5 or K3,3. Once we have established that our graph G is not planar, then,

the first step in our new torus embedding algorithm is to search for some subgraph

H of G homeomorphic to K5 or K3,3. We can use a planar embedding algorithm to

find such a subgraph as shown by the pseudocode in Algorithm 4.1.

4.1.1 The Embeddings of K5 and K3,3

On the torus, K5 has 231 different labelled embeddings, and K3,3 has 20 different

labelled embeddings. Figures 4.1 and 4.2 show all of the unlabelled embeddings of

K5 and K3,3 which, when labels are added in all non-isomorphic ways and equivalent
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Algorithm 4.1 Find K5 or K33(graph G)

Let H = G
for all edges e in H do

if H − e is not planar then

H = H − e
end if

end for

copies are removed, yield the 251 non-isomorphic, non-equivalent labelled embed-

dings of these graphs. All of these embeddings divide the torus into faces that are

homeomorphic to a planar disk.

4.2 Problems that Lead to Exponential Time

At first glance, it would appear that once we have divided the torus into faces by

embedding a subgraph of G homeomorphic to K5 or K3,3 we should be able to proceed

as with Demoucron’s algorithm and find out whether the graph is embeddable on the

torus in O(n2) time per embedding. There are two reasons why this is not the case.

First, unlike in Demoucron’s algorithm, we cannot choose just one admissible face

in which to embed a path from a bridge. This is intuitively and informally explained

by Myrvold, Chambers, and Kocay as follows [28]. Given a planar embedding of a

subgraph G′ of a graph G, if two bridges B1 and B2 of G with respect to G′ both

have admissible faces f1 and f2 and hinder each other with respect to f1 then they

must also hinder each other with respect to f2. Thus no matter which face we choose

for B1, we decrease the number of possibilities for bridge B2. On the torus, however,

this argument does not hold. Figure 4.3 illustrates this: the dotted lines represent

two bridges B1 and B2 that hinder each other with respect to f1 but not with respect

to f2. So, to avoid missing possible torus embeddings, after choosing a bridge B, we

will embed a bisecting path from B in all of the admissible faces for B.

The second reason we cannot proceed in O(n2) time per embedding with this
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Figure 4.1: Unlabelled embeddings of K5 on the torus.

approach is the presence of ugly faces in some of the embeddings of K5 and K3,3. To

illustrate the ugly faces of the K5 and K3,3 embeddings, we can arbitrarily label the

vertices of each of the unlabelled embeddings these graphs and use Algorithm 2.1 to

find the faces. One of the unlabelled K3,3 embeddings and four of the unlabelled K5

embeddings yield labelled embeddings with ugly faces as shown in Figures 4.4 and

4.5.

Notice that some of the ugly faces of the K5 and K3,3 embeddings contain repeated
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Figure 4.2: Unlabelled embeddings K3,3 on the torus.

edges as well as repeated vertices. In Figure 4.5 for example, edges (1, 6) and (3, 4)

are repeated. Subdividing these repeated edges creates more repeated vertices on the

ugly face. Thus the embeddings of graphs homeomorphic to K5 or K3,3 might have

ugly faces with more repeated vertices than the corresponding K5 or K3,3 embedding.

Because of the presence of repeated vertices on the ugly faces, there might be

more than one way to connect the internal vertices of a bridge B to its attachment

vertices if we are embedding B in an ugly face. Figure 2.7 showed a bridge that

was only embeddable in an ugly face f if both copies of two repeated vertices of f

were used. Also, it is possible for two bridges to hinder each other with respect to

ugly face f if one combination of attachment vertices is chosen, and not hinder each

other with respect to f if another combination of attachment vertices is chosen. The

left-hand side of Figure 4.6 shows an embedding of a graph containing a subgraph

homeomorphic to K3,3, and two bridges that are both embedded in the ugly face, f ,
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Figure 4.3: An embedding of a K3,3 homeomorph and its three faces, along with two

bridges that hinder each other with respect to f1 but not with respect to f2.

of the K3,3. The right-hand side of Figure 4.6 shows that the two bridges hinder one

another if the wrong copy of vertex 3 is chosen to attach to vertex v. If the solid edge

between vertices v and 3 were replaced by the dotted one, the two bridges would no

longer hinder one another.

Although there is no limit on the number of repeated vertices on the ugly face of

an embedding of a graph homeomorphic to K5 or K3,3, it is clear that each repeated

vertex can occur at most twice on such a face. Further, the maximum number of

times a vertex is repeated on some face cannot increase when a bisecting path is

embedded across a face. Therefore, there can be at most four possible ways to embed

a bisecting path from a bridge in a face. In fact, if a and b are the endpoints of a

bisecting path P from a bridge B, and xa and xb equal the number of times a and

b, respectively, occur on a face f that is admissible for B, then P can be embedded
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xa · xb ways in f .

4.3 Choosing a Bridge

At each stage of recursion, the choice of the bridge from which we will embed

a bisecting path can significantly reduce the size of the recursion tree. It is fairly

obvious, for example, that if we could determine that there is only one way to embed

a bridge that we should choose this bridge and embed it. In doing so, we might

eliminate some (possibly large) branches of the recursion tree of our algorithm. To

assist our algorithm in making a sensible choice of bridge, then, we define a penalty

P (B) for each bridge B as follows. For each admissible face f for B:

• let xi be the number of times attachment vertex i of B appears on f , and

• choose two different attachment vertices uf and vf of B such that xuf
· xvf

is

minimized.

Now,

P (B) =
∑

f is admissible for B

xuf
· xvf

.

Now, our algorithm can easily decide which bridge to choose at each stage of

recursion. If there is a bridge B with P (B) = 0, it must backtrack as there is a

bridge that has no admissible faces. Otherwise, it chooses a bridge B with minimum

penalty. Further, for each admissible face f for B we can choose a bisecting path

between the vertices uf and vf that were chosen when computing the penalty for B.

Such a path can be embedded xuf
· xvf

ways in f and this must be minimum over

all paths in B because of the way uf and vf were chosen. In this way we choose a

bridge that minimizes the number recursive calls at each stage of recursion and, in

most cases, significantly improve the running time of our algorithm.



27

4.4 Pseudocode for the New Algorithm

Algorithms 4.2a and 4.2b give pseudocode for the new algorithm.

Algorithm 4.2a StartTorusEmbed(graph G)

1: if G is planar then

2: Halt: a planar embedding of G is also a torus embedding of G.
3: else

4: Choose a subgraph H of G that is homeomorphic to either K5 or K3,3.
5: for all non-isomorphic, non-equivalent labelled embeddings Π(H), of H do

6: TorusEmbed(G, H , Π(H))
7: end for

8: end if

4.5 Correctness

It is not difficult to see that our new algorithm correctly determines if a graph

is toroidal and as such no complicated proof is necessary. By Theorem 2.3.1 it is

clear that any graph G that is not planar contains a subgraph G′ homeomorphic to

either K5 or K3,3 (or both). The algorithm considers all possible embeddings of G′

on the torus and all possible ways of embedding the bridges in each embedding. Our

algorithm finds an embedding of G if and only if G is toroidal.

4.6 Bad Input Graphs: An Afterthought

Initial timing studies of our algorithm led us to discover graphs which caused our

algorithm to be very slow. Analysis of the structure of such graphs revealed that the

slowness was a result of having multiple ways to embed some bridges when the graph

had one or more 2-vertex cuts. It is possible, however, because of theorem 4.6.1, to

preprocess these graphs to avoid the slow running time when they are given as input

to our algorithm.
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Algorithm 4.2b TorusEmbed(graph G, graph G′, embedding Π(G))

1: Use Algorithm 2.1 to find the faces of Π(G′).
2: Find the bridges of G with respect to G′ and the penalty P (B) for each bridge.
3: if there are no bridges remaining then

4: Halt: we have an embedding of G.
5: end if

6: if there is a bridge B with P (B) = 0 then

7: Backtrack: Π(G′) cannot lead to an embedding of G.
8: end if

9: Choose a bridge B with minimum P (B).
10: for all admissible faces, f , for B do

11: Choose a bisecting path P from B with endpoints uf and vf (see Section 4.3).
12: Let uf2 and vf2 be the second copies of vertices uf and vf on face f , respectively,

if they exist.
13: Embed P in Π(G′) using endpoints uf and vf .
14: TorusEmbed(G,G′,Π(G))
15: Remove P from Π(G′).
16: if vertex uf is repeated on face f then

17: Embed P in Π(G′) using endpoints uf2 and vf .
18: TorusEmbed(G,G′,Π(G))
19: Remove P from Π(G′).
20: end if

21: if vertex vf is repeated on face f then

22: Embed P in Π(G′) using endpoints uf and vf2.
23: TorusEmbed(G,G′,Π(G))
24: Remove P from Π(G′).
25: end if

26: if vertices uf and vf are both repeated on face f then

27: Embed P in Π(G′) using endpoints uf2 and vf2.
28: TorusEmbed(G,G′,Π(G))
29: Remove P from Π(G′).
30: end if

31: end for
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Theorem 4.6.1. Let B be a bridge of a graph G with respect to a 2-vertex cut {a, b}

in G. If B + (a, b) is planar, then G embeds on S if and only if

G − {v|v is an internal vertex of B} + (a, b)

(removing duplicate edges) embeds on S.

Proof. Given an embedding of

G − {v|v is an internal vertex of B} + (a, b),

we can replace (a, b) with a planar embedding of B or, if (a, b) is an edge in G, replace

(a, b) with a planar embedding of B + (a, b).

We created a preprocessor to reduce to a single edge (a, b) any bridge B with

respect to some 2-vertex cut {a, b} such that B + (a, b) is planar. This significantly

reduced the running time on input graphs containing such bridges.
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Chapter 5

Computational Results

We implemented our new torus embedding algorithm in C and have performed sev-

eral timing comparisons with the previous torus embedding algorithm of Myrvold

and Neufeld [30, 29], also implemented in C. Unfortunately, some of their code for

preprocessing the graphs and quickly detecting nontoroidal graphs was not available

to us. However, since this preprocessor could have been added to our algorithm as

well, the timing comparisons presented here are still “fair”.

The following sections present these comparisons. Both pieces of code were run

on the same computer with an Intel Pentium 4 processor at 3.6GHz, and the times

reflect the user time taken to process the graphs, not the real time. The timings are

given in milliseconds and insignificant times - below 1 millisecond - are indicated by

a 0 in the tables.

5.1 Known Obstructions

Algorithm 2.2 shows how a torus embedding algorithm can be used to check if

a graph is a topological or minor order torus obstruction. If the input graph G is

a torus obstruction, it is in some sense “almost” toroidal, since G − e (and G · e in

the case of a minor order obstruction) is toroidal for any edge e in G. Thus it seems

intuitively possible that a torus embedding algorithm would have to work harder to

find that these graphs are not toroidal; of course this depends on the structure of the

graph and how efficient the algorithm is for graphs with such structure. Further, since

we know that G− e (and G · e in the case of a minor order obstruction) is toroidal for

every edge e in G, the torus embedding algorithm is called at least m + 1 times for a
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Old Algorithm New Algorithm
n # Min Max Avg Total Min Max Avg Total
8 3 250 2,370 1,240 3,720 80 170 113 340
9 48 10 4,070 1,012 48,610 0 320 93 4,510

10 660 0 7,420 933 616,330 0 540 81 53,620
11 4,923 0 16,450 648 3,193,680 0 3,270 61 300,700
12 18,458 0 4,330 452 8,355,160 0 2,390 47 883,180
13 38,466 0 3,430 320 12,320,510 0 3,160 38 1,499,550
14 61,343 30 2,520 255 15,647,490 0 920 32 2,002,480
15 57,434 50 1,940 214 12,322,840 0 540 30 1,723,770
16 35,672 40 1,920 199 7,128,940 10 420 28 1,026,830
17 15,564 60 1,160 204 3,189,690 10 300 31 497,750
18 5,168 60 1,050 232 1,200,740 20 260 35 183,910
19 1,390 100 1,210 283 393,550 20 210 39 55,310
20 224 110 690 315 70,750 30 60 39 8,920
21 68 240 530 343 23,380 30 60 43 2,970
22 24 260 450 353 8,480 40 60 47 1,140
23 4 310 410 370 1,480 40 50 47 190
24 2 330 350 340 680 50 60 55 110

8-24 239,451 0 16,450 269 64,526,030 0 3,270 34 8,245,280
(Times in Milliseconds)

Table 5.1: Results of using the 239,451 known torus obstructions as input.

topological obstruction with m edges and 2m+1 times for a minor order obstruction

with m edges.

We timed the two algorithms using the 239,451 known torus obstructions as input.

These graphs have 8 ≤ n ≤ 24 and ⌈3n/2⌉ ≤ m ≤ 3n + 1. Table 5.1 shows the

results. On average, the new algorithm was approximately eight times faster than

the old algorithm to decide that a graph is a topological obstruction and whether or

not it is also a minor order torus obstruction.

5.2 Random Large Graphs

To test the efficiency of our new algorithm on larger graphs, we implemented a

random graph generator to create toroidal and non-toroidal graphs with a desired

number of vertices. The generator begins by randomly choosing an embedding of

either K5 or K3,3 on the torus and then repeatedly and randomly chooses one of the
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following graph updates until the desired order is reached.

Update 1: Choose two different edges (a, b) and (c, d) on the same face f of the

embedding. Subdivide each edge to create the edges (a, x), (x, b), (c, y), and

(y, d) and remove the edges (a, b) and (c, d). Then add the edge (x, y) thereby

splitting f into two faces. This increases the number of vertices by two.

Update 2: Choose one edge (a, b) and one vertex c on the same face f such that a! = b

and a! = c. Subdivide (a, b) to create the edges (a, x) and (x, b), and remove

the edge (a, b). Then add the edge (x, c) thereby splitting f into two faces. This

increases the number of vertices by one.

Update 3: Choose two different vertices a and b on the same face f such that (a, b)

is not already an edge of the graph. Then add the edge (a, b) thereby splitting

f into two faces. This does not increase the number of vertices.

Once we have the desired number of vertices in the graph, we either output the

graph as a random toroidal graph, or randomly add edges to the graph until it is

not toroidal (using our new algorithm to test this) and then output the graph as a

random non-toroidal graph.

In these ways, 100 toroidal graphs for n = 10, 20, . . . , 200 and 100 nontoroidal

graphs for n = 10, 20, . . . , 140 were generated giving 2000 random toroidal graphs

and 1400 random nontoroidal graphs. The timing data for the two algorithms using

these graphs as input is given in Tables 5.2 and 5.3. On average, the new algorithm

was approximately three times faster for toroidal graphs and 465 times faster for

nontoroidal graphs.
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Old Algorithm New Algorithm
n # Min Max Avg Total Min Max Avg Total

10 100 0 10 0 40 0 10 0 10
20 100 0 40 4 490 0 10 1 100
30 100 0 150 22 2,210 0 20 3 390
40 100 0 1,340 90 9,000 0 70 10 1,010
50 100 0 2410 248 24,860 0 230 19 1,910
60 100 10 2,360 449 44,920 0 410 31 3,140
70 100 10 4,840 703 70,340 10 2,010 69 6,970
80 100 30 26,480 1,656 165,600 20 3,480 92 9,250
90 100 50 64,720 3,679 367,950 20 77,810 923 92,380

100 100 70 57,050 3,529 352,930 30 1,390 145 14,540
110 100 80 276,180 8,579 857,930 40 11,650 351 35,150
120 100 130 89,110 7,814 781,440 40 4,060 361 36,100
130 100 110 119,460 10,722 1,072,200 70 17,860 891 89,140
140 100 220 110,060 15,996 1,599,680 80 36,480 1,205 120,590
150 100 250 392,970 21,015 2,101,530 100 4,790 544 54,420
160 100 190 846,200 34,873 3,487,380 110 30,230 1,460 146,010
170 100 290 2,298,510 57,860 5,786,050 120 1,084,040 11,946 1,194,660
180 100 450 530,000 61,183 6,118,390 170 3,193,980 37,474 3,747,470
190 100 600 1,254,340 81,236 8,123,660 210 5,532,240 69,239 6,923,960
200 100 510 1,253,850 82,029 8,202,930 190 378,110 12,586 1,258,690

10-200 2,000 0 2,298,510 19,584 39,169,530 0 5,532,240 6,867 13,735,890
(Times in Milliseconds)

Table 5.2: Results using small randomly generated toroidal graphs as input.
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Old Algorithm New Algorithm
n # Min Max Avg Total Min Max Avg Total

10 100 70 2,870 702 70,290 0 20 3 370
20 100 50 1,290 309 30,980 0 30 4 410
30 100 130 5,790 821 82,130 0 90 8 850
40 100 370 13,840 2,272 227,230 0 100 14 1,490
50 100 650 41,680 4,057 405,780 0 290 29 2,900
60 100 850 99,440 12,929 1,292,950 10 820 56 5,680
70 100 3,050 608,680 33,144 3,314,440 10 340 52 5,200
80 100 4,500 424,300 46,550 4,655,060 20 9,470 194 19,490
90 100 6,710 434,460 70,732 7073270 20 750 107 10,700

100 100 10,410 1,194,340 128,281 12,828,120 30 3,380 259 25,980
110 100 15,980 3,262,680 290,312 29,031,280 40 1,630 233 23,320
120 100 16,050 6,022,320 366,148 36,614,890 40 108,510 2244 224,440
130 100 26,360 9,279,460 493,267 49,326,740 70 24,640 872 87,210
140 100 44,470 10,815,250 737,345 73,734,570 50 9,290 649 64,920

10-140 1,400 50 10,815,250 156,205 218,687,730 0 108,510 337 472,960
(Times in Milliseconds)

Table 5.3: Results using small randomly generated nontoroidal graphs as input.
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Chapter 6

Conclusions and Future Research

In this thesis, we have presented a new exponential algorithm for embedding graphs on

the torus that was inspired by Demoucron’s O(n2) algorithm for embedding graphs on

the plane. We explained the differences in our approach for the torus that lead to its

exponential running time but gave results to show that, although it is exponential, it

is faster in practice than a previous exponential algorithm that was used to find many

torus obstructions. In this final section, we discuss two ways in which the running

time of our algorithm might be improved and we revisit the problem of searching for

torus obstructions that provided motivation for developing our new algorithm.

6.1 Enhancing Our Algorithm

Since there are 231 non-isomorphic labelled embeddings of K5 and only 20 non-

isomorphic labelled embeddings of K3,3 on the torus, it would be preferable if the

subgraph which our algorithm initially embeds on the torus were homeomorphic to

K3,3. Given an input graph G and a subgraph G′ of G homeomorphic to K5 it is

possible to either:

• find a subgraph homeomorphic to K3,3 in G, if one exists, or

• perform a small constant number of planarity tests to determine if G is toroidal

if G has no subgraph homeomorphic to K3,3 [15].

The “transformation” of K5 to K3,3 can be done in linear time using the method

of Asano [5]. As such, incorporating this transformation into our algorithm would

not improve upon its exponential running time. However, we expect that it would
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decrease the running time in practice in most cases where it initially finds a subgraph

homeomorphic to K5 in G. The cases where this might not be true include:

• when an embedding could be found using one of the first twenty embeddings of

K5 that would have been considered, and

• when the invalid embeddings of the K5 would have been quickly rejected.

In the cases where the graph does not contain a subgraph homeomorphic to K3,3

and therefore the transformation is not successful, according to Gagarin and Kocay,

the test for toroidality can be performed in linear time using a linear time planar

embedding algorithm [15]. Modifying our algorithm to take their approach when the

input graph does not contain a subgraph homeomorphic to K3,3, then, would make our

algorithm run in linear time for these graphs. Given the importance of the search for

a complete set of torus obstructions in motivating the development of our algorithm,

it is necessary to point out that in an exhaustive search for more torus obstructions,

we do not need to consider graphs that do not contain a subgraph homeomorphic

to K3,3. This is because all torus obstructions with this property have already been

found [11].

Our algorithm would also likely be more efficient if it separated the two copies

of repeated vertices on ugly faces as often and as early as possible. More formally,

suppose that we have embedded a subgraph G′ of graph G and that the embedding

has some ugly face f with k repeated vertices. Consider a bridge B of G with respect

to G′ for which f is admissible and let k′ and k′′ be the number of repeated vertices

on the two faces that result from embedding some bisecting path P in f . Currently,

for face f , our algorithm chooses as endpoints of P attachment vertices uf and vf

that minimize the value of xuf
· xvf

(as defined in section 4.3). The efficiency of our

algorithm could be improved in many cases if it also chose, from among the pairs of

vertices u and v that minimize xu · xv, a pair of vertices uf and vf that minimize
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the value of k′ + k′′. Efficiency could be further improved if, from among the bridges

that have minimum penalty, we chose a bridge that would minimize k′ + k′′. To

illustrate this, in Figure 6.1, the graph on the left-hand side shows the ugly face of

an embedding and one bridge. The two right-hand graphs show the resulting faces if

a bisecting path is embedded between vertices 2 and 5 (in which case neither of the

faces has a repeated vertex) and between vertices 2 and 7 (in which case one face has

two repeated vertices and the other has none). It would clearly be better to embed

the path between vertices 2 and 5 in this example.
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Figure 6.1: Using repeated vertices to embed a bridge in a face.

6.2 Searching for Torus Obstructions

As mentioned in the introduction, finding the complete set of obstructions to the

torus would be a major breakthrough in topological graph theory. Currently, the

major bottleneck in achieving the overall goal is a lack of stopping criteria for a

computer search; we do not yet have an upper bound on the number of vertices a

torus obstruction can have.

Even when we know torus obstructions of order n exist, there are values of n

for which there are simply too many graphs to be able to do an exhaustive search

for obstructions without much faster torus embedding code or a way of limiting the
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structure of the graphs that are obstruction candidates. As discussed in Section

2.3 of this thesis, attempts to design and implement a fast enough torus embedding

algorithm to do such exhaustive searches have not been fruitful. So it seems we must

turn our attention to reducing the number of candidate graphs so that the algorithm

presented in this thesis can complete the search.

Having a large database of known torus obstructions provides the opportunity

to analyze the structure of these graphs and make and prove conjectures about the

structure of the complete set. Since all torus obstructions are non-planar and all pro-

jective planar torus obstructions have been found [20], one approach is to examine the

structure of known torus obstructions with respect to a subgraph which is an obstruc-

tion for the plane or projective plane. This technique has already led to successful

characterization of the torus obstructions which do not contain a subgraph homeo-

morphic to K3,3 (as mentioned in section 6.1) [11]. Another approach is to choose

some subclass of the known obstructions and analyze their structure with the aim of

characterizing all of the obstructions that belong to that class. The obstructions that

have a 2-vertex cut form a promising choice of subclass for this approach.

We hope that these theoretical analyses and characterizations eventually lead us

to determine an upper bound N on the order of a torus obstruction. If the set of torus

obstructions still has not been proved complete at this point, we believe that sufficient

structural characterizations can limit the number of obstruction candidates enough

to perform exhaustive searches using our torus embedder on graphs of orders twelve

through N . Alternatively, structural characteristics might be used to define ways

of generating all torus obstructions from scratch. In any case, despite the daunting

number of torus obstructions and other complications, that have already been found,

we believe that there are methods to finish the search for the complete set.
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