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Abstract. Polyomino Venn (or polyVenn) diagrams are Venn diagrams whose
curves are the perimeters of orthogonal polyominoes drawn on the integer lattice.
Minimum area polyVenn diagrams are those in which each of the 2n regions, in a
diagram of n polyominoes, consists of exactly one unit square.

We construct minimum area polyVenn diagrams in bounding rectangles of size
2r × 2c whenever r, c ≥ 2. Our construction is inductive, and depends on two
“expansion” results. First, a minimum area polyVenn diagram in a 2r×2c rectangle
can be expanded to produce another that fits into a 2r+1×2c+1 rectangle. Secondly,
when r = 2, it can also be expanded to produce a polyVenn diagram in a 2r ×
2c+3 bounding rectangle. Finally, we construct polyVenn diagrams in bounding
rectangles of size (2n/2− 1)× (2n/2 + 1) if n is even, but where the empty set is not
represented as a unit square.

1. Introduction and motivation

Consider the set of three L shaped tetrominoes A, B, C, shown at the top of Figure 1.
If these are overlapped in the obvious way, then all subsets of {A,B,C} occur as a
unique unit square in the result, the 2× 4 rectangle shown at the bottom of Figure 1.
In other words, the curves that comprise the perimeters of these tetrominoes form a
Venn diagram when overlaid as shown.

Definition 1.1. A polyomino is an edge-connected set of unit squares, combined in
such a way so there are no holes, thus allowing the perimeter to be a simple, closed
curve. Some polyominoes are named by the number of unit squares they contain. For
example, polyominoes containing 2 to 5 unit squares are respectively called dominoes,
triominoes, tetrominoes or pentominoes.

We are using the term Venn diagram in this paper in the sense defined by Grünbaum
in [3].

Definition 1.2. A n-Venn diagram consists of n simple closed curves C1, C2, · · · , Cn

drawn in the plane such that each of the 2n intersections

(1.1) X1 ∩X2 ∩ · · · ∩Xn,

where Xi is either the open exterior or is the open interior of the curve Ci, is both
non-empty and connected.
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The problem of finding and overlapping congruent polyominoes to simulate a Venn
diagram was introduced by Thomson [5] on his website, where he displayed his solu-
tions for up to 4 polyominoes. Chow and Ruskey [2] investigated the more general
question of minimizing the number of unit squares occupied by the overlapping pen-
tomino pieces and produced minimum area polyVenn diagrams for n = 5, 6, 7. It
seems that minimum area polyVenn diagrams may find some use in data visualiza-
tion since they have the nice feature that the same amount of area is available in each
region for attaching labels. As an example, a polyVenn diagram from [2] is used for
data visualization in a Microbiology journal [1].

The paper [2] also initiated the question of polyominoes being placed into a rectangle
so that the resulting configuration is a Venn diagram in which each region is a single
unit square. In this paper, we settle several of conjectures/questions from [2] with
respect to these minimum area Venn diagrams that use polyominoes, here further
referred to as polyVenns or polyVenn diagrams. In particular, we show that there is a
minimum area polyVenn diagram for all n ≥ 1, where n is the number of polyominoes.
Furthermore, these diagrams are contained in bounding rectangles of various aspect
ratios.
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Figure 1. A (1, 2)-polyVenn.

Definition 1.3. A (r, c)-polyVenn is a minimum area polyVenn diagram formed by
r + c curves, each of which is the perimeter of a polyomino, placed into a 2r × 2c

rectangular grid.

For example, Figure 1 shows a (1, 2)-polyVenn. Note that in an n-set minimum area
polyVenn, each polyomino covers exactly 2n−1 unit squares, and intersects with every
other polyomino in exactly 2n−2 squares.

Proposition 1.4. A (0, c)-polyVenn does not exist for any c > 2.

Proof. Consider a (0, c)-polyVenn where c ≥ 2. There are c polyomino pieces covering
2c grids numbered 1, . . . , 2c. Let the leftmost piece be P1. Assume, without loss
of generality, that the one uncovered grid square is on the left. Then, P1 covers
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consecutive squares 2, . . . , 2c−1 + 1. Let the rightmost piece be P2. Then P2 covers
consecutive squares 2c−1 + 1, . . . , 2c. Thus the overlap of P1 and P2 is exactly one
square. However, the number of overlapped squares for any two pieces must be 2c−2,
so we must have 2c−2 = 1, that is c = 2. �

2. Expanding an Existing Diagram

It is natural to ask if polyVenns exist for all n-sets. And if they do, is there a method
to construct them? A well-known question [4] and an open problem [6], asks if a
simple Venn diagram of n curves can be extended to a simple Venn diagram of n+ 1
curves. We ask a similar question. We want to know if it is possible to extend a
polyVenn by enlarging the grid and adding more polyomino pieces.

We use a technique is called expansion. The idea is to take an existing (r, c)-polyVenn
V and expand it into a (r+r′, c+ c′)-polyVenn by the addition of r′+ c′ polyominoes.
The original polyominoes in V are “expanded” by uniformly stretching vertically by
a factor of 2r′ and horizontally by a factor of 2c′ .

The key element here is finding the r′ + c′ new polyominoes. The construction of
these new polyominoes will depend on r, r′, c, c′, but not otherwise on V . Figure 2
shows an expansion of the (1, 2)-polyVenn of Figure 1 into a (2, 3)-polyVenn.

Figure 2. A (2, 3)-polyVenn created by expansion.

In the example, we create 2 new polyominoes: we place a single domino in each 2× 2
expansion of the original unit squares of the of the (1, 2)-polyVenn. For each expanded
2× 2 region of these two pieces, the dominoes form a (1, 1)-polyVenn. However, it is
not generally necessary that each expansion contain a smaller polyVenn.

In the construction of a 2r′ × 2c′ expansion, we are not limited to only connected
pieces on the (r′, c′)-polyVenns. The pieces can be disconnected as long as they are
connected on the larger grid. We start by describing the disconnected polyomino sets
in terms of a half-set system (HSS).
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Definition 2.1. An n-HSS is a collection {S1, S2, . . . , Sn} of subsets of {1, 2, . . . , 2n}
with the property that for any nonempty subset A ⊆ {1, 2, . . . , n}∣∣ ⋂

i∈A

Si

∣∣ = 2n−|A|.

The following theorem provides an alternate way of checking for the HSS property.

Theorem 2.2. Let {S1, S2, . . . , Sn} be a collection of subsets of {1, 2, . . . , 2n}. For
all A ⊆ {1, 2, . . . , n}

(2.1)
∣∣ ⋂
i∈A

Si

∣∣ = 2n−|A|

if and only if for all subsets B ⊆ {1, 2, . . . n}, there is a unique element m ∈
{1, 2, . . . , 2n} such that

(2.2) {m} =

(⋂
i∈B

Si

)
∩

(⋂
i 6∈B

Si

)
.

Note that condition (2.2) is analogous to the Venn diagram condition that (1.1)
is non-empty. Connectedness is trivial for polyVenns since each (1.1) intersection
is a square. Thus the theorem provides us with another way of checking the Venn
diagram conditions. This will prove useful not only for proving that the constructions
are correct, but also computationally, particularly when the curves are represented
using computer words, so that the intersections can be carried out in constant time.
The proof of this Theorem is somewhat long and technical, so we put the proof in the
Appendix; see Subsection 7.1 for the proof. A similar remark applies the the lemma
in the following subsection.

We are interested in an HSS where the elements are unit squares on a grid. Using
these, we can define the conditions that will allow for an expansion of a polyVenn
diagram.

2.1. A sufficient condition.

Lemma 2.3. Let G be a set of 2r × 2c unit squares on a grid, each labeled {gij | 0 ≤
i < 2r, 0 ≤ j < 2c} Let X(G) be a 2r′ × 2c′ expansion of G, where each gij in G
expands to Gij. Each Gij is a 2r′×2c′ mini-grid in X(G). Let P = {P1, P2, . . . , Pr+c}
be an HSS on G. Let X(P ) be a set of subsets, {X(P1), X(P2), . . . , X(Pr+c)} on
X(G) where X(Pj) has the following property:

(2.3) If gij ∈ Pj, then Gij ∈ X(Pj).

For every Gij on X(G), let Mij = {Mij1,Mij2, . . . ,Mij(r′+c′)} be an HSS on Gij. Let
E be a set of subsets on X(G), E = {E1, E2, . . . , Er′+c′} with the conditions that for
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all k ∈ {1, 2, . . . , r′ + c′},

Ek =
⋃

0≤i<2r

0≤j<2c

Mijk.

Then X(P ) ∪ E is an HSS on X(G).

See the Appendix subsection 7.2 for the proof.

2.2. PolyVenns and HSSs. It is easy to see that the set of polyomino pieces in a
polyVenn, when represented as a set of (r + c) subsets on the labeled unit squares of
a 2r × 2c grid, is an HSS. This HSS has the property that the set of unit squares of
subset Pi must be connected and have no holes, i.e. Pi must be simply connected.

As with the complement of a set, the complement of Pi is the set of unit squares that
are not contained in Pi. If Pi is also simply-connected, we say Pi is self-complementing.
As it is done in Lemma 7.1, we can substitute any self-complementing polyomino piece
with its complement and still have a polyVenn.

Now we have another way to define a polyVenn besides Definition 1.3.

Definition 2.4. A (r, c)-polyVenn is an HSS on the unit squares of a 2r × 2c grid
where each subset Pi, where 1 ≤ i ≤ r + c, consists of a simply connected set of unit
squares.

We use this definition to determine the requirements for expanding an existing polyVenn
diagram.

Theorem 2.5. Let V be a polyVenn on a 2r × 2c grid G. Let G be expanded to
X(G) where every grid gij ∈ G is replaced by a 2r′ × 2c′ expansion, Gij, 0 ≤ i < 2r,
0 ≤ j < 2c. Suppose, for every Gij, there is an HSS Mij = (Mij1,Mij2, . . . ,Mij(r′+c′))
on the unit squares of Gij for which the following is true:

For each 1 ≤ k ≤ r′ + c′,

Ek =
⋃

0≤i<2r

0≤j<2c

Mijk covers a simply connected space on X(G).

Then a (r + r′, c + c′)-polyVenn exists that is a 2r′ × 2c′ expansion of V .

Proof. We represent the set of polyominoes in P in HSS form as described in Sec-
tion 2.2. By Lemma 2.3, we know that X(P ) ∪ E where E = {E1, . . . , Er′+c′} and
X(P ) as defined in Equation 2.3 is an HSS on X(G). Clearly, if each Pj is simply
connected on G, then X(Pj) is simply connected on X(G). Since E is already defined
as a simply connected set, X(P ) ∪ E is a simply connected HSS on the 2r+r′ × 2c+c′

grid and by Definition 2.4, is a (r + r′, c + c′)-polyVenn. �



6 B. BULTENA, M. KLIMESH, AND F. RUSKEY

3. Two expansions

We have two expansion results for (r, c)-polyVenns, Theorem 3.1 and Theorem 3.2.

Theorem 3.1. If there is a (2, c)-polyVenn, then there is a (2, c + 3)-polyVenn.

Proof. Let V be a (2, c)-polyVenn. For each gij on the 4× 2c grid, let Gij be a 1× 8
expansion. Consider 8 sets Mij where 0 ≤ i < 4 and 0 ≤ j < 2 and each Mij is a set
of 3 subsets of unit squares of a 1× 8 grid. Instead of using the subsets of the labeled
unit squares of a 1× 8 grid, we use the following illustrations, where a unit square is
in the subset if it is darkly colored. Let

M00 = ( KKJJ , MLML , KJJK ), M01 = ( JJKK , MLML , KJJK ),

M10 = ( JMKL , KJKJ , MLML ), M11 = ( MKLJ , JKJK , MLML ),

M20 = ( JKJK , MKLJ , MLML ), M21 = ( KJKJ . JMKL , MLML ),

M30 = ( MLML , JJKK , JKKJ ), M31 = ( MLML , KKJJ , JKKJ ).

For 2 ≤ j < 2c, let Mij = Mi0 when j is even and Mij = Mi1 when j is odd. It is
easy to check from the little grid drawings that each Mij is an HSS.

Let Ek be the union of the kth subset of each of the Mij sets, where 0 ≤ i < 4,
0 ≤ j < 2c and 1 ≤ k ≤ 3. In the Mij sets shown above, we can see that each of
the 1 × 8 rows, when stacked on top of each other in the order they are laid out,
forms a connected piece. Also, we see that the set of grids on the right are horizontal
reflections of the grids on the left.

When we arrange each Mij subset into Gij, we can visualize the connectedness of the
arrangements. Figure 3 clearly demonstrates that each Ek is simply connected, for
all values of c ≥ 1. Therefore, by Theorem 2.5, any (2, c)-polyVenn can be expanded
using the described construction. �

Theorem 3.2. If there is a (r, c)-polyVenn, then there is a (r + 1, c + 1)-polyVenn.

Proof. Let V be an (r, c)-polyVenn on a 2r × 2c grid G. For each gij on G, let
Gij be a 2 × 2 mini-grid on X(G), the 2r+1 × 2c+1 expansion of G. Consider a set
Mij = {Mij1,Mij2} where each Mij1 and Mij2 represent a pair of orthogonal dominoes
on the 2×2 grid. For ease of visualization, we continue to represent each subset of unit
squares on a 2 × 2 grid as it would appear if we filled in each square. For instance
the subset {(0, 0), (0, 1)} ⊂ {(0, 0), (0, 1), (1, 0), (1, 1)} would be represented as D .
Consider the following definitions of Mij, determined by 4 quadrants of X(G),{upper
left, upper right, lower left or lower right}.
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Figure 3. A 4×8 expansion of a (2, 2)-polyVenn: the top 3 pieces are
{E1, E2, E3}; the bottom pieces are {X(P1), X(P2), X(P3), X(P4)}.

Upper left: Mij = ( E , G ) or ( G , E )

Upper right: Mij = ( G , D ) or ( D , G )

Lower left: Mij = ( F , E ) or ( E , F )

Lower right: Mij = ( D , F ) or ( F , D )

Clearly each Mij, a set of one vertical and one horizontal domino, is an HSS on the
2× 2 mini-grid. To meet the requirements for Theorem 2.5, we need an arrangement
of the dominoes that is simply connected on the larger 2r+1 × 2c+1 grid.

Figures 4 and 5 illustrate two such layouts. For every Gij, there is vertical domino in
E1 or E2 and a horizontal in the other. Note that the figures have the same layout in
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Figure 4. An (r + 1, c + 1) expansion when r = c = 3.

the four center mini-grids, with the dominoes fitting together in a “spiral” formation.
Both figures also divide the grid into 4 quadrants from the center.

In Figure 5, E1 consists of the first subset of all the Mij, determined by the quadrant
of both i and j. E2 is the union of all the second subsets of the left Mij sets It is
very clear that this layout is both connected and simple. Thus, by Thereom 2.5, the
(r + 1, c + 1)-polyVenn exists.

Although only one example is sufficient, Figure 4 is a worthwhile construction to
illustrate. It uses a combination of both Mij options, alternating them between
adjacent Gij grids. Moving outward from the center, the connected wavy polygonal
chains branch out only at the boundaries of the quadrants. Outside of the center
and the quadrant boundary lines, each domino is connected to only two dominoes,
forming the wavy polygonal chains that emanate outward from the center. On the
boundary lines, three dominoes are connected, one branching into two.

If we represent the center four dominoes as a node in a graph, and every other domino
as a node, with edges between dominoes that are connected, we have a tree graph
with the center nodes as the root. Since a tree is connected and there are no cycles
that would close the “holes”, the diagram is simply connected. �

4. The base cases

In order for the inductive expansions to work we must start with some existing
polyVenns. When r = 0, the largest value of c is 2, by Lemma 1.4. When r = 1, we
make the following conjecture:

Conjecture 4.1. A (1, c)-polyVenn does not exist when c > 4.

The three polyVenns with r = 0 are shown in Figure 6. In Figures 8 and 9, we show
a (1, 3)-polyVenn and a (1, 4)-polyVenn.
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Figure 5. Another (r + 1, c + 1) expansion when r = c = 3.

B BA AA

Figure 6. All of the (0, c)-polyVenns.

BAB

C
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A

B

BC

AC

AB

Figure 7. The trivial (1, c)-polyVenns.

Now we have the base cases necessary to find (r, c)-polyVenns for all r, c > 1. See
Table 1 for a grid that shows how all are found, either as base cases or from the
expansion theorems.

5. Rectangles That Omit the Empty Set

In this section we discuss the problem of finding polyVenns that fit into h×w rectan-
gles where 2n − 1 = hw, with no explicit square for the empty set. Obviously this is
possible only when Mn = 2n − 1 is not a Mersenne prime. The first 8 such numbers
are 24−1 = 15 = 3·5, 26−1 = 63 = 32 ·7, 28−1 = 255 = 3·5·17, 29−1 = 511 = 7·73,
210 − 1 = 1023 = 3 · 11 · 31, 211 − 1 = 2047 = 23 · 89, 212 − 1 = 4095 = 32 · 5 · 7 · 13.
This problem was first mentioned in [2].

There is a simple construction of a polyVenn of dimension (2n/2−1)×(2n/2 +1) when
n is even. Consider the (r+ 1, c+ 1) expansions described in Theorem 3.2 and shown
in Figures 4 and 5. If we start from the base case in in Figure 6, we choose the empty
set to be represented by g00. In repeated expansions, the new g00 in each X(G) also
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D
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Figure 8. A (1, 3)-polyVenn with nice symmetry.

represents the empty set. We remove g00 from the grid, then strip off the first row,
g01 . . . g0,2c−1 from square polyVenn. We rotate it 90◦ and attach it to the last column
as the new g0,2c . . . g2r−1,2c .

Figure 10 shows an example of the base case that converts the (1, 1)-polyVenn to the
1× 3 grid. Figure 11 demonstrates this operation for n = 8, using the repeated 2× 2
expansion illustrated in Figure 4. It is easy to see how the same technique applies
to the expansion illustrated in Figure 5. The arrangements remain simply connected
by this operation because of a rotational symmetry of all but 2 polyominoes in both
expansions for all r = c > 1. The 2 non-symmetric polyominoes are the expansions
of the base case. However, Figure 11 shows that the polyominoes remain connected
under this operation.

The next open grid dimensions are

63 = 3× 21, 255 = 3× 85 = 5× 51, and 511 = 7× 73.

These are not covered by the above construction.

It seems unlikely that there will be any general construction possible when n is odd
and Mn is not prime.
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Figure 9. A (1, 4)-polyVenn.

20 21 22 23 24 25 26 27 28 29 210

20 F6 F6 F6 X X X X X X X X
21 F7 F7 F8 F9 ? ? ? ? ? ?
22 B B B A A A A A A
23 B B B B B B B B
24 B B B B B B B
25 B B B B B B
26 B B B B B
27 B B B B
28 B B B
29 B B
210 B

Table 1. PolyVenn Grid Dimensions Key; Fn is the diagram shown in
Figure n; X are configurations known to be impossible by Lemma 1.4; A
and B are configurations implied by Theorems 3.1 and 3.2, respectively;
The question marks are currently open problems.
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Figure 10. Converting the base case (1, 1)-polyVenn to a 1 × 3
polyVenn that omits the empty set.

Figure 11. Omiting the empty set: a polyVenn on the (2n/2 − 1) ×
(2n/2 + 1) grid for n = 8.

6. Final Remarks and Open Problems

We are presently trying to prove the non-existence of a (1, 5)-polyVenn through both
exhaustive computer search and mathematical techniques. If num(n) is the number
of polyomino pieces with area 2n−1 and height no more than 2, up to vertical and
horizontal reflection, then num(2) = 2, num(3) = 6, num(4) = 63, num(5) = 8189
and num(6) = 140,473,849. If Pn denotes the set of distinct polyVenns (again up
to vertical and horizontal reflection) on the 2 × 2n−1 grid, then |P2| = 1, |P3| = 34,
|P4| = 3034. We are currently computing the number of polyVenns when n = 5; the
computation has not finished, but the number is at least a million.
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It is interesting to contemplate what happens in our construction for the case of a
square, when n → ∞. If we restrict each square so that it is 1 × 1 then note that
our construction implies the following proposition, where {0, 1}∞ is the set of all
(one-way) infinite binary strings b1b2 · · · .

Proposition 6.1. There is function f : [0, 1]× [0, 1]→ {0, 1}∞ with the property that
each of the pre-images of the i-th projection to 1 is connected. I.e., for i = 1, 2, . . .,
each of the sets

f−1({b1b2b3 · · · ∈ {0, 1}∞ : bi = 1})

is connected.

7. Appendix: Proofs

7.1. Proof of Theorem 2.2. We start by showing that the following lemma demon-
strates that we can substitute any Si with its complement and this new collection of
sets is also an n-HSS.

Lemma 7.1. For an n-HSS {S1, S2, . . . , Sn}, the following statement is true: For
any subset A ⊆ {1, . . . , n} and any 2-partition (X, Y ) of A,∣∣∣∣∣

(⋂
i∈X

Si

)
∩

(⋂
i∈Y

Si

)∣∣∣∣∣ =

∣∣∣∣∣⋂
i∈A

Si

∣∣∣∣∣ = 2n−|A|.

Proof. Our proof is by induction on increasing values of |Y | and |A|. If |Y | = 0, then
X = A and Y = � and the statement is true by Definition 2.1. Assume that it is
true for all 0 ≤ |Y | < |A|. Let e ∈ Y and

Z =

(⋂
i∈X

Si

)
∩

 ⋂
i∈Y \{e}

Si

 .

Note |Z| = 2n−(|A|−1) and |Z ∩ Se| = 2n−|A| by the induction hypothesis. Let

Z ′ = Z \ (Z ∩ Se)

= Z ∩ (Z ∪ Se)

= Z ∩ Z ∪ Z ∩ Se

= Z ∩ Se.
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The sets Z ∩ Se and Z ∩ Se are disjoint, and (Z ∩ Se) ∪ (Z ∩ Se) = Z, so

|Z ∩ Se| =

∣∣∣∣∣∣
(⋂

i∈X

Si

)
∩

 ⋂
i∈Y \{e}

Si

 ∩ Se

∣∣∣∣∣∣
=

∣∣∣∣∣
(⋂

i∈X

Si

)
∩

(⋂
i∈Y

Si

)∣∣∣∣∣
= |Z| − |Z ∩ Se|
= 2n−(|A|−1) − 2n−|A| = 2n−|A|

�

Copy of Theorem. Let {S1, S2, . . . , Sn} be a collection of subsets of {1, 2, . . . , 2n}.
For all A ⊆ {1, 2, . . . , n}∣∣ ⋂

i∈A

Si

∣∣ = 2n−|A|

if and only if for all subsets B ⊆ {1, 2, . . . n}, there is a unique element m ∈
{1, 2, . . . , 2n} such that

{m} =

(⋂
i∈B

Si

)
∩

(⋂
i 6∈B

Si

)
.

Proof. (⇒) Let B,C ⊆ {1, 2, . . . , n} such that B 6= C. Let j ∈ B and j /∈ C. Let X
and Y be subsets and

X =

(⋂
i∈B

Si

)
∩

(⋂
i/∈B

Si

)
,

and

Y =

(⋂
i∈C

Si

)
∩

(⋂
i/∈C

Si

)
.

By Lemma 7.1, |X| = |Y | = 2n−n = 1. Let X = {m} and Y = {n}. Since
m ∈ Sj and n ∈ Sj, m 6= n. So B maps to a unique element m. Conversely, for
any element m ∈ {1, 2, . . . , 2n} there is a subset {i | m ∈ Si} ⊆ {1, 2, . . . , n}. Since
|{1, 2, . . . , 2n}| = |{B | B ⊆ {1, 2, . . . , n}}|, B is unique.

(⇐) Let S = {S1, S2, . . . , Sn} be a set of subsets on {1, 2, . . . , n}. Suppose that for
all B ⊆ {1, 2, . . . n}, there exists a unique value m ∈ {1, 2, . . . , 2n} such that

{m} =

(⋂
i∈B

Si

)
∩

(⋂
i 6∈B

Si

)
.
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Let A ⊆ {1, 2, . . . , n} and B ⊆ A. We use induction on k where |A| = n− k and

|Z| =

∣∣∣∣∣∣
(⋂

i∈B

Si

)
∩

 ⋂
i∈A\B

Si

∣∣∣∣∣∣ = 2k.

For the base case, k = 0. Then |Z| = 20, |A| = |{1, 2, . . . , n}| = n − 0, and Z =
{m} ⊆ A. Suppose the statement is true for all k ≥ 0. Then let |Z| = 2k, |A| = n−k
and Z ⊆ A. Choose a subset B ⊆ A and let j ∈ B. Let

X =

(⋂
i∈B

Si

)
∩

 ⋂
i∈A\B

Si

 ,

Y =

 ⋂
i∈B\{j}

Si

 ∩
 ⋂

i∈A\(B\{j})

Si


and Z = X ∪ Y . Because X includes an intersection of Sj while Y includes an
intersection of Sj, X and Y are disjoint sets. Therefore |Z| = |X ∪ Y | = |X|+ |Y | =
2× 2k = 2k+1. Furthermore:

Z =

 ⋂
i∈B\{j}

Si

 ∩
 ⋂

i∈A\B

Si

 ∩ Sj

∪
 ⋂

i∈B\{j}

Si

 ∩
 ⋂

i∈A\B

Si

 ∩ Sj


=

 ⋂
i∈B\{j}

Si

 ∩
 ⋂

i∈A\B

Si


Note i ∈ A\{j} and |A\{j}| = n− (k+ 1). Let A\{j} be partitioned into 2 subsets
C = B \ {j} and D = A \B and let

T = {T1, T2, . . . , Tn}

be a set of subsets where

Ti =

{
Si if i ∈ D

Si if i ∈ C or i = j or i /∈ A.
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Then ∣∣∣∣∣∣
⋂

i∈A\{j}

Ti

∣∣∣∣∣∣ =

∣∣∣∣∣
(⋂

i∈C

Ti

)
∩

(⋂
i∈D

Ti

)∣∣∣∣∣
=

∣∣∣∣∣∣
 ⋂

i∈B\{j}

Si

 ∩
 ⋂

i∈A\B

Si

∣∣∣∣∣∣
= |Z|
= 2k+1

= 2n−(n−(k+1))

= 2n−|A\{j}|.

So T is an HSS. By Lemma 7.1, S is an HSS. �

7.2. Proof of Lemma 2.3.

Copy of Lemma. Let G be a set of 2r × 2c unit squares on a grid, labeled {gi,j |
0 ≤ i < 2r, 0 ≤ j < 2c} Let X(G) be an (r′, c′) expansion of G, where each mini-grid
Gij of dimension 2r′ × 2c′ on X(G) replaces gij on G. Let P = {P1, P2, . . . , Pr+c} be
an HSS on G. Let X(P ) be a set of subsets, {X(P1), X(P2), . . . , X(Pr+c)} on X(G)
where X(Pj) has the following property:

If gij ∈ Pj, then Gij ∈ X(Pj).

For every Gij on X(G), let Mij = {Mij1,Mij2, . . . ,Mij(r′+c′)} be an HSS on Gij. Let
E be a set of subsets on X(G), E = {E1, E2, . . . , Er′+c′} with the conditions that for
all k ∈ {1, 2, . . . , r′ + c′},

(7.1) Ek =
⋃

0≤i<2r

0≤j<2c

Mijk.

Then X(P ) ∪ E is an HSS on X(G).

Proof. Choose a unit square g ∈ X(G). Then g ∈ Guv for some 0 ≤ u < 2r,
0 ≤ v < 2c. By Theorem 2.2, since Muv is an HSS on Guv, then there is a subset
B ⊆ {1, 2, . . . , r′ + c′} with the property that

(7.2) {g} =

(⋂
k∈B

Muvk

)⋂(⋂
k/∈B

Muvk

)
.

Note that for any i 6= p or j 6= q that

(7.3) Mij ∩Mpq = ∅.
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Because the Mijs are distinct,

Mijk = Mij \Mijk,

and the complement of Equation (7.1) is defined as

(7.4) Ek =
⋃

0≤i<2r

0≤j<2c

Mijk.

Let Y ⊆ X(G), where

Y =

(⋂
k∈B

Ek

)⋂(⋂
k/∈B

Ek

)

=

⋂
k∈B

 ⋃
0≤i<2r

0≤j<2c

Mijk


⋂

⋂
k/∈B

 ⋃
0≤i<2r

0≤j<2c

Mijk


 by Equation (7.1) and (7.4)

=

 ⋃
0≤i<2r

0≤j<2c

(⋂
k∈B

Mijk

)⋂
 ⋃

0≤i<2r

0≤j<2c

(⋂
k/∈B

Mijk

) by Equation (7.3)

=
⋃

0≤i<2r

0≤j<2c

[(⋂
k∈B

Mijk

)⋂(⋂
k/∈B

Mijk

)]
.

By Equation (7.2), g ∈ Y when i = u and j = v. So

(7.5) Y ∩Guv = {g}.

Also, since P is an HSS, by Theorem 2.2 there is a subset A ⊆ {1, 2, . . . , r + c} such
that

{guv} =

(⋂
i∈A

Pi

)⋂(⋂
i/∈A

Pi

)
,

then

Guv =

(⋂
i∈A

X(Pi)

)⋂(⋂
i/∈A

X(Pi)

)
,

by definition of X(Pi).
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Now, if we let C = A∪ {i+ r + c | i ∈ B} and S = X(P )∪E, where X(Pi) = Si and
Ei = Si+r+c, then by Equation (7.5),

{g} = Y ∩Guv

=

(⋂
k∈B

Ek

)⋂(⋂
k/∈B

Ek

)⋂(⋂
i∈A

X(Pi)

)⋂(⋂
i/∈A

X(Pi)

)

=

(⋂
j∈C

Si

)⋂⋂
j /∈C

Si

 .

By Theorem 2.2, S = X(P ) ∪ E is an HSS. �
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