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Abstract. An n-Venn diagram consists of n curves drawn in the plane in
such a way that each of the 2n possible intersections of the interiors and
exteriors of the curves forms a connected non-empty region. A k-region in
a diagram is a region that is in the interior of precisely k curves. A n-Venn
diagram is symmetric if it has a point of rotation about which rotations of
the plane by 2π/n radians leaves the diagram fixed; it is polar symmetric
if it is symmetric and its stereographic projection about the infinite outer
face is isomorphic to the projection about the innermost face. A Venn
diagram is monotone if every k-region is adjacent to both some (k − 1)-
region (if k > 0) and also to some k+1 region (if k < n). A Venn diagram
is simple if at most two curves intersect at any point. We prove that the
“Grünbaum ” encoding uniquely identifies monotone simple symmetric
n-Venn diagrams and describe an algorithm that produces an exhaustive
list of all of the monotone simple symmetric n-Venn diagrams. There are
exactly 23 simple monotone symmetric 7-Venn diagrams, of which 6 are
polar symmetric.
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1 Introduction

1.1 Historical Remarks

The familiar three circle Venn diagram is usually drawn with a three-fold rota-
tional symmetry and the question naturally arises as to whether there are other
Venn diagrams with rotational symmetry. Grünbaum [5] discovered a rotation-
ally symmetric 5-Venn diagram. Henderson [7] proved that if an n-curve Venn
diagram has an n-fold rotational symmetry then n must be prime. Recently,
Wagon and Webb [11] cleared up some details of Henderson’s argument. The
necessary condition that n be prime was shown to be sufficient by Griggs, Kil-
lian and Savage [4] and an overview of these results was given by Ruskey, Savage,
and Wagon [10].

A Venn diagram is simple if at most two curves intersect at any point. There
is one simple symmetric 3-Venn diagram and one simple symmetric 5-Venn di-
agram. Edwards wrote a program to exhaustively search for polar symmetric
? Research supported in part by University of Victoria Graduate Fellowship.
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7-Venn diagrams and he discovered 5 of them, but somehow overlooked a 6-th
[3]. His search was in fact restricted to monotone Venn diagrams, which are those
that can be drawn with convex curves [1].

A program was written to search for monotone simple symmetric 7-Venn di-
agrams and 23 of them were reported in the original version of the “Survey of
Venn Diagrams” (Ruskey and Weston [9]) from 1997, but no description of the
method was ever published and the isomorphism check was unjustified. Later
Cao [2] checked those numbers, and provided a proof of the isomorphism check,
but again no paper was ever published. In this paper, we justify the isomor-
phism check and yet again recompute the number of symmetric simple 7-Venn
diagrams, using a modified version of the algorithm in [2].

1.2 Definitions

Let C = {C0, C1, . . . , Cn−1} be a collection of n finitely intersecting simple closed
Jordan curves in the plane. The collection C is said to be an n-Venn diagram
if there are exactly 2n nonempty and connected regions of the form X0 ∩X1 ∩
· · · ∩Xn−1 determined by the n curves in C, where Xi is either the unbounded
open exterior or open bounded interior of the curve Ci. Each connected region
corresponds to a subset S ⊆ {0, 1, . . . , n − 1}. A region enclosed by exactly k
curves is referred as a k-region or a k-set.

A simple Venn diagram is one in which exactly two curves cross each other
at any point of intersection. In this paper we only consider simple diagrams. A
Venn diagram is called monotone if every k-region (0 < k < n) is adjacent to
both a (k − 1)-region and a (k + 1)-region. It is known that a Venn diagram
is monotone if and only if it is isomorphic to some diagram in which all of the
curves are convex [1].

A Venn diagram is rotationally symmetric (usually shortened to symmetric)
if there is a fixed point p in the plane such that each curve Ci, for 0 ≤ i < n, is
obtained from C0 by a rotation of 2πi/n about p. There is also a second type of
symmetry for diagrams drawn in the plane. Consider a rotationally symmetric
Venn diagram as being projected stereographically onto a sphere with the south
pole tangent to the plane at the point of symmetry p. The projection of the
diagram back onto the parallel plane tangent to the opposite pole is called a
polar flip. If the polar flip results in an isomorphic diagram then the diagram
is polar symmetric. Figure 1 shows a 7-set polar symmetric Venn diagram (this
diagram is known as “Victoria” [3]). In conceptualizing polar flips the reader
may find it useful to think of the symmetric diagram as being projected on a
cylinder, with the region that intersects all of the sets at the bottom of the
cylinder and the empty region at the top of the cylinder. Then the polar flip is
akin to turning the cylinder upside-down (see Figure 5).

Two Venn diagrams are generally said to be isomorphic if one of them can be
changed into the other or its mirror image by a continuous transformation of the
plane. However, when discussing rotationally symmetric diagrams we broaden
this definition to allow for polar flips as well. Thus the underlying group of
potential symmetries has order 4n.
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As was pointed out earlier, if an n-Venn diagram is symmetric then n is prime.
Simple symmetric diagrams for n = 2, 3, 5, 7 have been found. The main purpose
of this paper is to determine the total number of simple monotone symmetric
7-Venn diagrams. A nice poster of the set of resulting diagrams may be obtained
at http://www.cs.uvic.ca/~ruskey/Publications/Venn7/Venn7.html.

Fig. 1. “Victoria”: a simple monotone polar symmetric 7-Venn diagram.

The paper is organized as follows. In Section 2 we outline the classical com-
binatorial embedding of planar graphs, which is our basic data structure for
storing the dual graphs of Venn diagrams. In Section 3 we discuss the represen-
tation of Venn diagrams as strings of integers, focussing on those which were
used by Grünbaum to manually check whether purported Venn diagrams were
Venn diagrams or not, and, if so, whether they were isomorphic.

2 2-Cell Embedding

In this section we outline some of the theory that is necessary for the combina-
torial embedding of Venn diagrams in the following sections.

Given a graph G and a surface S, a drawing of G on the surface without
edge crossing is called an embedding of G in S. The embedding is 2-cell, if
every region of G is homomorphic to an open disk. For a 2-cell embedding of a
connected graph with n vertices, m edges and r regions in an orientable surface
Sh with h handles we have Euler’s formula n−m+ r = 2− 2h.

Let G = (V,E) be a finite connected (multi)graph with V = {v1, v2, · · · , vn}.
For each edge e ∈ E, we denote the oriented edge from vi to vj by (vi, vj)e and
the opposite direction by (vj , vi)e. For each vertex vi, let Ei be the set of edges
oriented from vi; i.e., Ei = {(vi, vj)e : e ∈ E for some vj ∈ V }. Let Φi be the set
of cyclic permutations of Ei. The following theorem proved in [12] shows that
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Fig. 2. Examples of normal and non-normal families of intersecting closed curves: (a)
is a NFISC, (b) and (c) are not.

there is a one to one correspondence between the set of 2-cell embedding of G
and the Cartesian product

∏
Φi.

Theorem 1. Let G = (V,E) be a finite connected (multi)graph. Define Ei and
Φi as above. Then each choice of permutations (φ1, φ2, . . . , φn) of Φ1 × Φ2 ×
· · · × Φn determines a 2-cell embedding of G in some orientable surface Sh.
Conversely, for any 2-cell embedding of G in Sh, there is a corresponding set of
permutations that yields that embedding.

3 Representations of Symmetric Monotone Venn
Diagrams

3.1 G-encoding

A family of intersecting simple closed curves (or a FISC) is a collection of simple
closed curves enclosing a common non-empty open region and such that every
two curves intersect in finitely many points [1].

Definition 1. A normal FISC (or NFISC) is a FISC satisfying the following
additional conditions:

– Every curve touches the infinite face,
– The collection is simple, i.e., exactly two curves meet at every point of in-

tersection and they cross each other (each intersection is transverse).
– The collection is convex drawable; i.e., it can be transformed into a FISC

with all curves convex by a homeomorphic transformation of the plane.

Let C be an NFISC consisting of n Jordan curves and call the diagram
consisted of these n curves an n-diagram. Choosing an arbitrary curve as curve
0, we label all n curves by their clockwise appearance on the outmost region.
Let M be the number of times the curves touch the infinity face, M ≥ n. A G-
encoding consists of M+1 sequences and an M×n matrix F . The first sequence,
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(a)

i Ii wi

0 0 1 2 2 2 1 2 1 1

1 1 2 0 2 0 0 2 2 0

2 2 0 1 1 1 0 0 0 1

3 0 1 1 1 2 2 2 1 2

4 1 0 2 2 0 2 0 2 0

0 1 2 3 4 5 6 7

(b)

0 1 2

0 ∞ 4 5
1 7 ∞ 2
2 4 7 ∞
3 ∞ 6 7
4 3 ∞ 6

Fig. 3. (a) G-encoding of Figure 2(a). (b) The corresponding F -matrix.
.

call it I = I0, I1, . . . , IM−1 has length M . Starting with curve 0, it specifies
the curves encountered as we walk around the outer face of the n-diagram in
clockwise direction. Thus, Ii ∈ {0, 1, . . . , n− 1}. Each element of I corresponds
to a curve segment in the outer face of the diagram. For each curve c, the first
segment is the one which corresponds to the first appearance of c in I. The other
M sequences are denoted w0, w1, . . . , wM−1. Sequence wi records intersections
along curve Ii as a sequence of integers, indicating the curves encountered at
intersection points. As usual, the curves are traversed in a clock-wise order.

Among all intersections of the traversal starting at Ii with curve j, let F [i, j]
be the index of the first intersection with curve j after curve j touches the outer
face for the first time. That is, if p1, p2, . . . , pt are the indices of the intersections
with curve j in sequence wi, the first segment of curve j will eventually hit the
outer face, say between intersections at positions ps−1 and ps; then F [i, j] = ps.

Figure 3 shows the G-encoding of the 3-diagram of Figure 2(a). The first
table shows the I and wi sequences. The second table is the F matrix. Since the
curves are not self intersecting, we define F [i, j] =∞ if j = Ii. It is worth noting
that in general the wi sequences may have different lengths.

By constructing a circular list of oriented edges for each vertex (point of
intersection), it can be shown that there is a correspondence between a 2-cell
embedding of an NFISC n-diagram and its G-encoding.

Theorem 2. Each G-encoding of an NFISC of n Jordan curves uniquely deter-
mines a 2-cell embedding of the n-diagram in some sphere S0.

Note that for a non-NFISC, the G-encoding does not necessarily determine a
unique diagram. For example the two non-NFISC diagrams (b) and (c) in Figure
2 have the same G-encoding.

3.2 The Grünbaum Encoding

Grünbaum encodings were introduced by Grünbaum as a way of hand-checking
whether two Venn diagrams are distinct. However, no proof of correctness of
the method was ever published. The Grünbaum encoding of a simple symmetric
monotone Venn diagram consists of four n-ary strings, call them w, x, y, z.
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String w is obtained by first labeling the curves from 0 to n − 1 according to
their clockwise appearance on the outer face and then following curve 0 in a
clockwise direction, starting at a point where it touches the outermost region
and meets curve 1, recording its intersections with the other curves, until we
reach again the starting point.

String x is obtained by first labeling the curves in the inner face starting at
0 in a clockwise direction and then by following curve 0 in a clockwise direction
starting at the intersection with curve 1.

Strings y and z are obtained in a similar way but in a counter-clockwise
direction. First, curves are re-labeled counter-clockwise as they appear on the
outer face. Then strings y and z are obtained by following curve 0 in a counter-
clockwise direction starting from the outermost and innermost regions respec-
tively and recording its intersection with other curves. The Grünbaum encoding
of the Venn diagram shown in Figure 1 is given below.

w: 1 4 2 5 3 6 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6
x: 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6 1 4 2 5 3 6
y: 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6 1 4 2 5 3 6
z: 1 4 2 5 3 6 1 6 3 5 3 6 2 5 1 6 1 5 3 6 2 5 1 4 2 6 1 6 2 5 1 4 2 4 1 6

Property 1. Each string of the Grünbaum encoding of a simple symmetric mono-
tone n-Venn diagram has length (2n+1 − 4)/n.

Proof. Clearly each string will have the same length, call it L. An n-Venn dia-
gram has 2n regions, and in a simple diagram every face in the dual is a 4-gon. We
can therefore use Euler’s relation to conclude that the number of intersections
is 2n − 2. By rotational symmetry every intersection represented by a number
in the encoding corresponds to n − 1 other intersections. However, every inter-
section is represented twice in this manner. Thus nL = 2(2n − 2), and hence
L = (2n+1 − 4)/n. ut

According to the definition of Grünbaum encoding, each string starts with 1
and ends with n−1. Given string w of the Grünbaum encoding, we can compute
the other three strings. Let L = (2n+1−4)/n denote the length of the Grünbaum
encoding, and let w[i], x[i], y[i] and z[i] be the ith element of w, x, y and z,
respectively, where 0 ≤ i ≤ L− 1. Then, clearly,

y[i] = n− w[L− i− 1] and z[i] = n− x[L− i− 1].

To obtain x, we first find out the unique location in w where all curves have
been encountered an odd number of times (and thus we are now on the inner
face), then shift w circularly at this location. The string z can be easily inferred
from y in a similar manner.

Three isomorphic Venn diagrams may be obtained from any Venn diagram
by “flipping” and/or “polar flipping” mappings. The strings x, y and z are the
first strings of the Grünbaum encodings of these isomorphic diagrams. So we can
easily verify isomorphisms of any Venn diagram using the Grünbaum encoding.
Due to space limitations the proof of the following theorem is omitted.
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Theorem 3. Each Grünbaum encoding determines a unique simple symmetric
monotone n-Venn diagram (up to isomorphism).

Using Grünbaum encoding of a Venn diagram, we can also verify whether it
is polar symmetric or not by the following theorem.

Theorem 4. An n-Venn diagram is polar symmetric if and only if the two string
pairs (w, z) and (x, y) of its Grünbaum encoding are identical.

Proof. For a given Venn diagram D with Grünbaum encoding (w, x, y, z) there
are three isomorphic Venn diagram obtained by horizontal, vertical and po-
lar flips with Grünbaum encodings (y, z, w, x), (x,w, z, y) and (z, y, x, w) respec-
tively. Let D′ denotes the Venn diagram obtained by polar flip mapping of D.
If D is polar symmetric, then it remains invariant under polar flips So D and
D′ must have the same Grünbaum encoding, that is, (w, x, y, z) = (z, y, x, w).
Therefore, for a polar symmetric Venn diagram we have w = z and x = y.

Conversely, suppose we have a Venn diagram D with Grünbaum encoding
(w, x, y, z) such that w = z and x = y. Then (w, x, y, z) = (z, y, x, w). So the
isomorphic Venn diagram D′ obtained by polar flip mapping of D, has the same
Grünbaum encoding as D. So by theorem 3 D and D′ are equivalent and the
diagram is polar symmetric. ut

3.3 The Matrix Representations of Monotone Diagrams

Because of the property of symmetry, an n-Venn symmetric diagram may be
partitioned into n identical sectors. Each sector is a pie-slice of the diagram
between two rays from the point of symmetry offset by 2π/n radians from each
other. So the representation of one sector is sufficient to generate the whole
diagram.

Given a sector of a simple monotone n-Venn diagram, one can map it to a
graph consisting of n intersecting polygonal curves (which we call polylines), as
shown in Figure 4. Putting 0s between these n polylines and 1s at the inter-
sections gives us a 0/1 matrix. We then can expand the matrix by appending
identical matrix blocks to generate a matrix that represent the whole Venn dia-
gram.

An n-Venn diagram has exactly 2n regions. Among them one is most inside
(inside all curves) and one is most outside (outside all curves). The rest of 2n−2
regions are evenly distributed in each sector. Hence in each sector there are
(2n− 2)/n regions. We use a 1 to indicate the starting point of a region and the
ending point of the adjacent region. This implies that there are exactly (2n−2)/n
1’s in the matrix. So one can always use a (n − 1) × (2n − 2)/n 0/1 matrix to
represent one sector and use a (n − 1) × (2n − 2) 0/1 matrix to represent the
whole diagram.

If a matrix (aij), i = 0, 1, · · · , n − 2, j = 0, 1, · · · , (2n − 2)/n − 1, is a
representation of a Venn diagram, then any matrix obtained by a shift of some
number of columns is also a representation of the same diagram. Therefore we
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Fig. 4. Matrix representation of Victoria

can always shift the representation matrix so that a00 = 1. The matrix with 1
at the first entry is called the standard representation matrix.

The matrix representation of a simple symmetric monotone Venn diagram of
n curves has the following properties:

(a) The total number of 1’s in the matrix is (2n − 2)/n, with one 1 in each
column.

(b) There are
(
n
k

)
/n 1s in the kth row, for k = 1, 2, . . . , n− 1.

(c) There are no two adjacent 1’s in the matrix.

Note that different 0/1 matrices could represent isomorphic Venn diagrams.
How do we know whether a given 0/1 matrix represents a “new” Venn diagram?
The Grünbaum encoding provides a convenient way to solve this problem.

4 The Algorithm

The algorithm to find all symmetric monotone Venn diagrams consists of the
following four steps.

1. Step one: Generate all possible standard 0/1 matrices with n− 1 rows and
(2n − 2)/n columns that satisfy (a), (b) and (c). To generate each row we
are generating restricted combinations; e.g., all bitstrings of length 18 with
k 1s, no two of which are adjacent.

2. Step two: Check validity. For each matrix V generated in step one, by
appending it n − 1 times, we first extend the matrix to a matrix X that
represents the whole potential Venn diagram. A valid matrix must represent
exactly 2n − 2 distinct regions of the corresponding Venn diagram. The two
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other regions are the outermost and the innermost regions. Each region is
specified by its rank defined as

rank = 20x0 + 21x1 + · · ·+ 2n−1xn−1,

where xi = 1 if the curve i is outside of the region and xi = 0 otherwise.
In order to check the regions and generate the Grünbaum encoding, an n×
(2n − 2) matrix C called the P-matrix is generated. The P-matrix gives us
another which represents the curves of the Venn diagram (see Table 1). The
first column of C is set to [0, 1, . . . , n − 1]T and for each successive column
j, 1 ≤ j < 2n − 2, we use the same entries of column j − 1 and then swap
Cij , C(i+1)j if Xi(j−1) = 1.
To check the validity of matrix X, we scan it column by column from left to
right. Each 1 indicates the end of one region and start of another region. The
entries in the same column of matrix C are used to compute the rank of the
regions. The generated matrix is a valid representation of a Venn diagram if
2n − 2 distinct regions are found by scanning the whole matrix, which will
only occur if each of the rank calculations are different.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5
2 2 3 0 2 2 2 2 5 5 5 5 3 6 6 2 2 2
3 3 2 2 0 4 4 5 2 2 2 6 6 3 2 6 6 4
4 4 4 4 4 0 5 4 4 4 6 2 2 2 3 3 4 6
5 5 5 5 5 5 0 0 0 6 4 4 4 4 4 4 3 3
6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0

Table 1. The first 18 columns of the P-matrix of Victoria.

3. Step three: Generate the Grünbaum encoding. To generate Grünbaum
codes, we first relabel the polylines by the order of appearances in the first
row so that they are labeled with 0, 1, ..., n − 1 (for Table 1 the relabeling
permutation is 0124536). Following polyline 0 and recording its intersections
with the other polylines, we have the first string w of the Grünbaum encod-
ing. The other three strings, x, y and z, are computed from w.

4. Step four: Eliminate isomorphic solutions. By sorting the four strings of
the Grünbaum encoding of each produced Venn diagram into lexicographic
order and comparing them with the encodings of previously generated Venn
diagrams, we eliminate all isomorphic solutions. If the current diagram is not
isomorphic to any of previously discovered diagrams, then it will be added
to the solution set.

Checking all possible 0/1 matrices for n = 7, we found exactly 23 non-
isomorphic symmetric monotone Venn diagrams, of which 6 diagrams are polar
symmetric. See Figures 6 and 7.
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5 Drawing

The polyline diagram in figure 4 shows one sector of the cylindrical projection
of Victoria. So given the matrix representation of a Venn diagram, one can
easily get its cylindrical projection by computing the cylindrical coordinates of
each intersection point. Because of the symmetry, it is sufficient to compute the
coordinates only for the first curve. We also need extra points to specify peeks
and valleys. To get a visually pleasing shape, we moved the points in such a way
that at each point the line segments are perpendicular to each other. Figure 5
shows the resulting representation for Victoria.

The Cartesian coordinates of each point on the plane can be obtained from
its cylindrical coordinates. Then we draw the first curve by applying spline in-
terpolation to the computed coordinates. The other six curves are simply drawn
by rotating the first curve about the point of symmetry. Figures 7 and 6 show
drawings of all 23 diagrams, as constructed by this method.

Fig. 5. Cylindrical representation of Victoria

6 Conclusions and open problems

A matrix representation of simple symmetric monotone Venn diagrams has been
introduced. We proved that Grünbaum encoding can be used to check the iso-
morphism and polar symmetry of simple symmetric monotone Venn diagrams.
Using an exhaustive search algorithm we verified that there are exactly 23 non-
isomorphic simple symmetric monotone 7-Venn diagrams, which 6 of them are
polar symmetric. Below is the list of some related open problems: (a) Find the
total number of simple symmetric non-monotone 7-Venn diagrams. (b) Is there
a simple symmetric Venn diagram for n = 11?
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Fig. 7. All 17 simple monotone non-polar symmetric 7-Venn diagrams


