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Abstract. A universal cycle for the k-permutations of 〈n〉 = {1, 2, ..., n} is a circular string of length
nk that contains each k-permutation exactly once as a substring. Jackson (Discrete Mathematics, 149
(1996) 123–129) proved their existence for all k ≤ n − 1. Knuth (The Art of Computer Program-
ming, Volume 4, Fascicle 2, Addison-Wesley, 2005) pointed out the importance of the k = n − 1 case,
where each (n − 1)-permutation is “shorthand” for exactly one permutation of 〈n〉. Ruskey-Williams
(ACM Transactions on Algorithms, in press) answered Knuth’s request for an explicit construction of
a shorthand universal cycle for permutations, and gave an algorithm that creates successive symbols
in worst-case O(1)-time. This paper provides two new algorithmic constructions that create successive
blocks of n symbols in O(1) amortized time within an array of length n. The constructions are based on
a 300 year-old bell-ringer pattern, and the recent shift Gray code by Williams (SODA, (2009) 987-996)
and are both implemented in C. For the bell-ringers algorithm, we show that the majority of changes
between successive permutations are full rotations; asymptotically, the ratio of them is (n − 2)/n.
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(a)
“aperiodic”

(b)
“bell-ringer”

(c)
“cool-lex”

(d)
“direct”

(e)
“erroneous”

Fig. 1. Cycles (a)-(d) are Ucycles for Π3(4), or equivalently shorthand Ucycles for Π(4), and 4 is a periodic symbol
in (b)-(d). Cycle (e) contains the erroneous substring 242, as well as an extra copy of 142.

1 Introduction

A universal cycle (or Ucycle) [1] is a circular string containing every object of a particular type
exactly once as substring. For example, consider the circular string in Figure 1(a). Starting from
12 o’clock, and proceeding clockwise, its substrings of length three are

432, 321, 214, 142, . . . , 413, 132, 324, 243. (1)

In total there are 24 substrings, and these substrings include every 3-permutation of 〈4〉 exactly
once. For this reason, Figure 1(a) is a Ucycle for the 3-permutations of 〈4〉. Let Πk(n) denote the
set of all k-permutations of 〈n〉. Notice that |Πk(n)| = nk = n(n − 1) · · · (n − k + 1) (the falling
factorial). In the special case k = n, we use Π(n) to represent the permutations of 〈n〉. Jackson
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proved that Ucycles of Πk(n) exist whenever k < n [6]. On the other hand, the reader should take
a moment to convince themselves that Ucycles of Π(n) do not exist when n ≥ 3.

This introductory section describes four interpretations for Ucycles of Πn−1(n), then discusses
applications, relevant history, and concludes with an outline of our new results.

1.1 Interpretations

To describe the first interpretation, notice that |Πn−1(n)| = nn−1 = n! = |Π(n)|. Each (n − 1)-
permutation of 〈n〉 extends to a unique permutation of 〈n〉 by appending its missing symbol from
〈n〉. For example, the first string in (1) is 432, and it is missing the symbol 1. We say that the
substring 432 is shorthand for the permutation 4321. Similarly, the substrings in (1) are shorthand
for the following list of permutations

4321, 3214, 2143, 1423, 4213, . . . , 2413, 4132, 1324, 3241, 2431. (2)

For this reason, Ucycles for Πn−1(n) can be interpreted as Ucycles for permutations, and are
called shorthand Ucycles for Π(n). The substrings comprising Πn−1(n) are known as the Ucycle’s
substrings, and the extended strings comprising Π(n) are the Ucycles’s permutations.

The second interpretation of a shorthand Ucycle for Π(n) is its binary representation. Given a
length n substring in a shorthand Ucycle for Π(n), the next symbol is the symbol that follows this
substring in the shorthand Ucycle, and the next substring is the length n substring that ends with
this next symbol. That is, if s1s2 · · · sn−1 is a substring in a shorthand Ucycle for Π(n), then the next
symbol is some x ∈ 〈n〉, and the next substring equals s2s3 · · · sn−1x. However, since s2s3 · · · sn−1x
is in Πn−1(n), then there are only two choices for x. In particular, x equals the missing symbol
from s1s2 · · · sn−1 or equals s1, and this dichotomy gives rise to the binary representation. More
specifically, the ith bit in the binary representation is 0 if the substring starting at position i has
its next symbol equal to its missing symbol; otherwise the substring starting at position i has its
next symbol equal to its first symbol and the ith bit in the binary representation is 1. The binary
representation can be visualized by placing two copies of the shorthand Ucycle for 〈n〉 above itself,
with the second copy left-shifted (n−1) positions. This comparison vertically aligns the first symbol
of each length n substring with its next symbol. Accordingly, 1s are recorded precisely when the
vertically aligned symbols are equal. This is illustrated below for Figure 1(a), where 4 denotes the
first symbol in the shorthand Ucycle (above) and in its rotation (below).

432142134234123143124132
142134234123143124132432
001100011000101100100011

To check this binary string, the first substring is 432, and its next symbol and missing symbol are
both 1. Therefore, the first bit is 0. On the other hand, the third substring is 214, and its next
symbol and first symbol are both 2. Therefore, the third bit is 1. (As above, the shorthand Ucycle
for Π(n) is assumed to “start” with n (n−1) · · · 2.)

The binary representation can also be described in terms of permutations, our third interpreta-
tion. If p1p2 · · · pn is a permutation in a shorthand Ucycle for Π(n), then the next permutation begins
with p2p3 · · · pn−1. Therefore, the next permutation is either p2p3 · · · pn−1pnp1 or p2p3 · · · pn−1p1pn.
These two cases are obtained by rotating the first symbol of p1p2 · · · pn into one of the last two
positions. More precisely, if the ith bit in the binary representation is 0, then the ith permutation
is transformed into the (i + 1)st permutation by the rotation σn = (1 2 · · · n), and if the ith bit
is 1, then the rotation σn−1 = (1 2 · · · n) is used. Thus, permutations in a shorthand Ucycle for



Π(n) are in a circular Gray code using σn and σn−1. For example, in (2), the first permutation
4321 is transformed into the second permutation 3214 by σ4 (first bit in the binary representation
is 0). On the other hand, the third permutation 2143 is transformed into the fourth permutation
1423 by σ3 (the third bit in the binary representation is 1). Conversely, every circular Gray code
of Π(n) using σn and σn−1 provides a shorthand Ucycle for Π(n) by appending the first symbols
of each permutation.

The fourth interpretation for shorthand Ucycles for Π(n) is their equivalence to Hamiltonian
cycles in the directed Cayley graph on Π(n) with generators σn and σn−1 (see [16] for more details).

1.2 Some “Applications”

The binary representation provides a natural application for shorthand Ucycles of Π(n): n! per-
mutations are encoded in n! bits. The Gray code interpretation also provides applications. The
rotations σn and σn−1 can also be described respectively as prefix shifts of length n and n− 1. Pre-
fix shifts of length n and n− 1 can be performed as basic operations within linked lists or circular
arrays. In particular, a prefix shift of length n simply increments the starting position within a cir-
cular array, whereas a prefix shift of length n−1 increments the starting position and then performs
an adjacent-transposition of the last two symbols. This is illustrated below with the permutation
123456 (below left) being followed by 234561 or 234516 (below right) with the arrow denoting the
starting position and successive symbols being read clockwise within the circular array.
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In applications, σn and σn−1 may also have special significance. For example, in cycling it is cus-
tomary for riders in a breakaway group to organize themselves in a line. Riders in the front reduce
the wind-resistance for the riders behind, and at regular intervals the lead rider gives up their
position to conserve energy. The easiest positions for the lead rider to reinsert themselves is the
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By proceeding in an order provided by a shorthand universal cycle for Π(n), it can be assured that
no rider is given an unfair advantage by continually slipstreaming behind riders of larger sizes (who
would further reduce wind-resistance) or from the same team (who would allow the trailing cyclist
to ride in an optimal position).

1.3 History

Ucycles for combinatorial objects were introduced by Chung, Diaconis, and Graham [1] as natural
generalizations of de Bruijn cycles [3], which are circular strings of length 2n that contain every
binary string of length n exactly once as substring. They pointed out that Ucycles of Π(n) do
not exist, and suggested using order-isomorphism to represent the permutations. A string is order-
isomorphic to a permutation of 〈n〉 if the string contains n distinct integers whose relative orders are
the same as in the permutation. For example, 321341 is an order-isomorphic Ucycle for Π(4) since
its substrings — 321, 213, 134, 341, 413, 132 — are order-isomorphic to 321, 213, 123, 231, 312, 132.



Recently, Johnson [8] resolved a long-standing conjecture [1] that only n + 1 symbols are necessary
for constructing order-isomorphic Ucycles for Π(n).

Knuth suggested the use of what we call shorthand-isomorphism, and asked for an explicit con-
struction [10]. An explicit construction was discovered by Ruskey-Williams [16], who also provided
an algorithm that creates each successive symbol in the Ucycle (or bit in the binary representation)
in worst-case O(1)-time. The construction has the property that the symbol n appears in every nth
position in the Ucycle. For this reason, it is said to have a periodic symbol. See Figure 1(d) for the
construction when n = 4, and notice that 4 appears in every 4th position. (Figure 1(a) illustrates
that shorthand Ucycles of Π(n) do not necessarily contains a periodic symbol, and it is also obvious
that a shorthand Ucycles of Π(n) can contain at most one periodic symbol when n ≥ 3.)

When a shorthand Ucycle for Π(n) has n as its periodic symbol, then its remaining symbols are
divided into blocks of length n−1. Furthermore, each one of these blocks must be a distinct permu-
tation of 〈n− 1〉. Given this situation, the permutations of 〈n− 1〉 are called the sub-permutations.
Figure 2 summarizes the substrings, permutations, binary representation, and sub-permutations of
Figure 1(d).
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substrings: 432, 321, 214, 142, . . .
permutations: 4321, 3214, 2143, 1423, . . .
binary representation: 001 · · ·

periodic symbol: 4
sub-permutations: 321, 213, 132, 312, 123, 231

Fig. 2. The direct construction for n = 4.

Given this terminology, there is a succinct description of the construction in [16]: The permuta-
tions for n are the sub-permutations for n + 1. For example, the Ucycle for n = 3 is 321312, and so
the permutations are 321, 213, 132, 312, 123, 231. Notice that the permutations are identical to the
sub-permutations found in Figure 2. For this reason, the construction in [16] can be described as the
direct construction. The binary representation of the direct construction also has a nice description.
If x1x2 · · · xn! is the binary string representation for n, then

001n−2 x1001
n−2 x2 · · · 001

n−2 xn! (3)

is the binary string representation for n + 1, where xi = 1 − xi, and 1n−2 represents n − 2 copies
of 1. For example, the binary representation for n = 2 is 00, and so the binary representation for
n = 3 and n = 4 are

00 0̄ 00 0̄ = 001001 and.

001 0̄ 001 0̄ 001 1̄ 001 0̄ 001 0̄ 001 1̄ = 001100110010001100110010.

More generally, Ucycles are one of the basic concepts within the research area of combinatorial
generation. For exceptional coverage of this area the reader is encouraged to consult the new fascicles
of The Art of Computer Programming [10–12], which devotes over 400 pages to the subject.

1.4 Our New Approach

This paper expands upon [16] by providing two additional constructions and algorithms. The first
construction leads to a bell-ringing method that is over 300 years-old and is folklore in the cam-



panology community, although does not appear to be explicitly mentioned in print — it was brought
to our attention by Holroyd [5]. This construction is illustrated in Figure 1(b).

The second construction uses the recently discovered shift Gray code of Williams [20], which
generalizes cool-lex order [14] [15]. Aside from the intrinsic interest of having additional answers
to Knuth’s query, both of these constructions have two distinct advantages over the previous con-
struction found in [16].

First, each construction contains fewer 1s in its binary representation. The bell-ringers algorithm
is particularly advantageous in this regard since we show in Theorem 3 that the vast majority of
bits are 0; asymptotically, the ratio of them is (n− 2)/n.

Second, the resulting algorithms are faster in the following scenario: Suppose an application
wants a shorthand Ucycle for the permutations of {1, 2, . . . , n}. Since n! is prohibitively large, the
shorthand universal is given to the application n symbols at a time within an array of length n. Our
new algorithm updates this array in average-case O(1)-time. In other words, it provides successive
blocks of n symbols in constant amortized time. This is an improvement over the previous algorithm
[16], which would have required Ω(n)-time to obtain the next n symbols.

Sections 2 and 3 describe these new constructions, respectively. In both cases the strategy is
to generate a list of Π(n) that will become the sub-permutations for the shorthand Ucycle for
Π(n + 1). Central to this strategy is a proof that the result is in fact a shorthand Ucycle for
Π(n + 1). Towards this goal, we introduce the following notation and definition.

Definition 1. Let P = p1, p2, . . . , pn! be a list of permutations. By R(P ) we denote the cyclic string
(n+1)p1(n+1)p2 · · · (n+1)pn!. The list P is recyclable if R(P ) is a shorthand universal cycle for
the permutations of 〈n+1〉.

It is important to note that not every order of Π(n) is recyclable. This is illustrated by Figure
1(e). In fact, the two types of “errors” that appear in Figure 1(e) are the only two types of errors
that can occur. This fact is illustrated in the following theorem.

Theorem 1. A circular list of permutations P = p1, p2, . . . , pn! is recyclable if and only if the
following two conditions are satisfied.

– If α and β are two successive permutations, then α−1
i − β−1

i ≤ 1 for all i ∈ 〈n〉.

– If α and β are two successive permutations and α′ and β′ are also two successive permutations,
then whenever there is a j ∈ 〈n〉 such that

αj+1 · · ·αnβ1 · · · βj−1 = α′

j+1 · · ·α
′

nβ′

1 · · · β
′

j−1,

then α = α′ (and hence β = β′).

Proof. Let X = R(P ) = (n+1)p1(n+1)p2 · · · (n+1)pn!. The first condition guarantees that any n
successive symbols from X are distinct; that is, they are all n-permutations of 〈n+1〉. The condition
says that no symbol in the successor moves left more than one position (it could move right).

The second condition will guarantee that all of the length n substrings of X are distinct. Since
the length of X is obviously (n + 1)!, this will finish the proof. Let ω be a substring of X of length
n. Clearly, if ω does not contain n+1 then it is distinct, since in that case we must have ω = pi

for some i. If ω contains n+1, then ω = αj+1 · · ·αn(n+1)β1 · · · βj−1 for some value of j ∈ 〈n〉
and successive permutations α and β. If ω is not distinct, then there would be some other two
permutations α′ and β′ such that ω′ = α′

j+1 · · ·α
′

n(n+1)β′

1 · · · β
′

j−1. ⊓⊔



2 The Bell-Ringer Construction and 7-order

The bell-ringer construction is based on an ordering of the permutations of 〈n〉 that we call “seven
order” and denote 7-order. It is a recursive method in which every permutation π of 〈n−1〉 is
expanded into n permutations of 〈n〉 by inserting n in every possible way into π. These insertions
are done in a peculiar order that is reminiscent the way the number seven is normally written, and
is what inspires us to call it 7-order. That is, the first permutation is nπ, the second is πn, and
the remaining permutations are obtained by moving the n one position to the left until it is in
the second position. We use the notation 7n to denoted the 7-order of 〈n〉. Thus 72 = 21, 12 and
73 = 321, 213, 231, 312, 123, 132 and the first 4 permutations of 74 are 4321, 3214, 3241, 3421.

Theorem 2. The list 7n is recyclable.

Proof. We use Theorem 1. The first condition is clearly met by 7n.
To verify the second condition, our strategy is to show that every symbol in α is determined

by β1 · · · βj−1 and αj+1 · · ·αn. First note that either n is in αj+1 · · ·αn or it is in β1 · · · βj−1. If n
is in αj+1 · · ·αn, then α = β1 · · · βj−1xαj+1 · · ·αn, where x = 〈n〉 \ {β1, . . . , βj−1, αj+1, . . . , αn}. If
n = βk is in β1 · · · βj−1, but n 6= β1, then α = β1 · · · βk−1βk+1nβk+2 · · · βj−1xαj+1 · · ·αn. If β1 = n
then the result follows by induction. ⊓⊔

We define the bell-ringer order to be the order of permutations obtained by recycling 7n.

2.1 The binary interpretation of bell-ringer order

In this subsection we infer the recursive 0/1 structure of R(7n). Since the ns are n apart, every nth
and (n + 1)st bits are 0. (This is because ns1s2 · · · sn−1 ∈ Π(n) and s1s2 · · · sn−1n ∈ Π(n) when
s1s2 · · · sn−1 is a sub-permutation.) We thus may think of the 0/1 string as having the form

Υ (n) = 00 B(n)1 00 B(n)2 00 · · · 00 B(n)(n−1)!,

where |B(n)j| = n− 2. The initial 0 represents the σn that takes n(n− 1) · · · 21 to (n− 1) · · · 21n.
We will now describe how to get Υ (n + 1) from Υ (n).

We use several strings which are defined below. We omit n from the first two notations since it
will be clear from context.

A = 1n−2, Zk = 0n−k−210k−1, and Xn−1 = A00Z100Z200 · · · 00Zn−3.

Note that |A| = |Zk| = n− 2 and |Xn| = (n− 1)(n − 2). Given Υ (n), the 0/1 string for n + 1 is

Υ (n + 1) = 00 Xn 00 1B(n)1 00 Xn 00 1B(n)2 00 · · · 00 Xn 00 1B(n)(n−1)!.

Here are the bitstrings for Υ (4) and Υ (5), where the initial case is Υ (3) = 00 1 00 1 =
00 B(3)1 00 B(3)2. First, Υ (4) = 00 11 00 01 00 11 00 11 00 01 00 11, which can also be written as
Υ (4) = 00 A 00 Z1 00 1B(3)1 00 A 00 Z1 00 1B(3)2 = 00 X2 1B(3)1 00 X200 1B(3)2. And Υ (5) is

00 111 00 001 00 010 00 111 (= 00 A 00 Z1 00 Z2 00 1B(4)1 = 00 X3 00 1B(4)1)

00 111 00 001 00 010 00 101 (= 00 A 00 Z1 00 Z2 00 1B(4)2 = 00 X3 00 1B(4)2)

00 111 00 001 00 010 00 111 (= 00 A 00 Z1 00 Z2 00 1B(4)3 = 00 X3 00 1B(4)3)

00 111 00 001 00 010 00 111 (= 00 A 00 Z1 00 Z2 00 1B(4)4 = 00 X3 00 1B(4)4)

00 111 00 001 00 010 00 101 (= 00 A 00 Z1 00 Z2 00 1B(4)5 = 00 X3 00 1B(4)5)

00 111 00 001 00 010 00 111 (= 00 A 00 Z1 00 Z2 00 1B(4)6 = 00 X3 00 1B(4)6).

From these recursions we can determine the number of 1’s.



Theorem 3. The number of 1s in Υ (n) is 2((n − 1)!− 1).

Proof. If cn is the number of 1s then our recursive construction implies that cn+1 = cn + 2(n −
2)(n − 2)! with c3 = 2. The solution of this recurrence relation is 2((n − 1)!− 1). ⊓⊔

Asymptotically, this means that the relative frequency of σn−1 transitions is about 2/n and the
relative frequency of σn transitions is asymptotically (n − 2)/n. This answers an open question
listed at the end of [16]; it asks whether there is a listing that uses more σns than σn−1s. The
bell-ringers listing clearly does so.

2.2 Iterative Rules

Now let us describe a rule for transforming one permutation of 〈n−1〉 in 7-order into the next. This
is useful for efficiently generating 7-order and the bell-ringer shorthand Ucycle, as well as proving
a folklore result from campanology.

Let s = s1s2 · · · sn−1 ∈ Π(n − 1). Let h be the index such that sh = n− 1. If h = 2, then let i
be the maximum value such that

s1 s2 · · · si = s1 n− 1 n− 2 · · · n− i + 1

and let j be chosen to maximize the value of sj such that i + 1 ≤ j ≤ n − 1. (Notice that j is
undefined when i = n− 1, and otherwise j > i + 1.) The next permutation in 7-order is

7(s) =











s1s2 · · · sh−2shsh−1sh+1sh+2 · · · sn−1 if h > 2 (4a)

s2s3 · · · sis1si+2si+2 · · · sj−2sjsj−1sj+1sj+2 · · · sn−1 if h=2 and s1<n− i (4b)

s2s3 · · · sn−1s1 otherwise. (4c)

To see why (4) generates 7-order, one can simply compare each of the cases to the recursive definition
of seven order:

– (4c) is performed when the largest symbol is in the first position of s, and the result is the first
symbol of s is moved into the last position;

– (4a) is performed when the largest symbol is in neither of the first two positions of s, and the
result is the largest symbol moves one position to the left;

– (4b) is performed when the largest symbol is in the second position, and the result is that
symbols s2s3 · · · si move one position to the left by recursion, and then the jth symbol moves
one position to the left.

Algorithmically, successive iterations of (4) can be generated by a CAT algorithm when s is
stored in array. That is, the 7-order for Π(n − 1) can be generated in O((n − 1)!)-time. To do
this, one needs to simply keep track of the position of the largest symbol in a variable h. More
precisely, given the value of h, (4c) is performed 1 · (n − 2)! times, and involves O(n − 1) work
each time. Similarly, (4a) is performed (n − 2) · (n − 2)! times, and involves O(1) work. Finally,
(4b) is performed 1 · (n − 2)! times, and involves O(n − 1) work each time. Therefore, the overall
implementation O((n− 1)!)-time since

n · (n− 2)! + n · (n− 2)! + (n− 2) · (n− 2)! = 3n − 2 · (n− 2)! ≤ 4 · (n− 1)!.

This proves the following theorem.



Theorem 4. 7-order for Π(n − 1) can be generated in O((n − 1)!)-time when the permutations
are stored in an array. Using the same algorithm, the bell-ringer shorthand Ucycle for Π(n) can
be generated in O((n− 1)!)-time when successive blocks of length n are stored in an array (and the
first element of the array is fixed at value n).

The iterative rule in (4) also allows us to formally prove a beautiful result from the bell-ringing
community. This result gives an iterative rule for directly generating the permutations from the
bell-ringer Ucycle, and does not appear to have been formally proven in print [5].

Theorem 5. Let s = s1s2 · · · sn ∈ Π(n) be a permutation in the bell-ringer shorthand Ucycle
for Π(n), where m is the maximum value of s1 and sn, and k is the maximum value such that
n n − 1 · · · k appears in the permutation as a circular substring. If k − 1 ≤ m ≤ n − 1, then the
next permutation is s2s3 · · · sn−1s1sn. Otherwise, (if m = n or k − 1 < m) the next permutation is
s2s3 · · · sns1.

Proof. Notice that s1s2 · · · sn−1 is a substring of the bell-ringer Ucycle, and sn is its missing symbol.
Let un denote the next symbol after this substring. Recall from earlier discussions that un ∈ {s1, sn},
with un = s1 implying the next permutation is s2s3 · · · sn−1s1sn, and un = sn implying the next
permutation is s2s3 · · · sn−1s1sn.

If s1 = n or sn = n, then un = n due to the periodic symbol in the bell-ringer shorthand Ucycle.
In both of these cases m = n, so the claim is verified in these cases. Assume that m < n for the
remainder of the proof.

If s1 = n−1, then un = s1 by (4c). Similarly, if sn = n−1 then un = s1 by (4a) In both of these
cases m = n− 1, so the claim is verified in these cases. Assume that m < n− 1 for the remainder
of the proof.

If s1 = k− 1 or sn = k− 1, then un = s1 by (4b). In both of these cases m = k− 1, so the claim
is verified in these cases.

Finally, if m < k − 1, then un = sn by (4b).

3 Cool-lex Construction

This section discusses the cool-lex order for Π(n) [20]. Given a permutation, a prefix left-shift moves
the symbol at a given position into the first position of the resulting permutation. This operation
is denoted by ⊳ as follows

⊳(s1s2 · · · sn, j) = sjs1s2 · · · sj−1sj+1sj+2 · · · sn.

A prefix right-shift is the inverse operation and involves moving the symbol in the first position
into a given position. This operation is denoted by ⊲ as follows

⊲(s1s2 · · · sn, j) = s2s3 · · · sj−1s1sj+1sj+2 · · · sn.

Cool-lex order is generated by a single operation that is repeated over and over again. The
operation was originally stated in terms of prefix left-shifts, but for the purposes of this document
it will be useful to restate the definition in terms of prefix right-shifts. Both the cool left-shift and
cool right-shift involve the notion of a non-increasing prefix which is defined below.

Definition 2 (!). If s = s1s2 . . . sn is a string, then the non-increasing prefix of s is!(s) = s1s2 · · · sj

where j is the maximum value such that sj−1 ≥ sj for all 2 ≤ j ≤ !(s).



For example, !(55432413) = 55432 and !(33415312) = 33.

Given a list of strings, the reflected list begins with the last string in the original list and
ends with the first string in the original list. In particular, the reflected cool-lex order for Π(n) is
generated by repeated applications of the cool right-shift which is defined below.

Definition 3 (Cool right-shift (
−−→
cool)). Let s = s1 . . . sn and s′ = s2s3 · · · sn and k′ = |!(s′)|.

Then,

−−→
cool(s) =











⊲(s, k′ + 1) if k′ ≤ n− 2 and s1 > sk′+1 (5a)

⊲(s, k′ + 2) if k′ ≤ n− 2 and s1 < sk′+1 (5b)

⊲(s, n) otherwise (if k′ ≥ n− 1). (5c)

For example,
−−→
cool circularly generates the following list of Π(3) which is the reflected list found

in (9). These lists for Π(n) are denoted by
−→
C (n) as seen below

−→
C (3) = 321 213 123 231 312 132. (6)

3.1 Proof that cool-lex order of permutations is recyclable

This section proves that
−→
C (n) becomes a universal cycle for Πn(n + 1) after prefixing n + 1 as a

periodic symbol. For example, when n = 3

−→
C (3) = 321 213 123 231 312 132

R(
−→
C (3)) = 432142134123423143124132

and R(
−→
C (3)) is a universal cycle for the 3-permutations of 〈4〉. In general, if L is a list of Π(n)

then R(L) denotes the result of prefixing n + 1 to every permutation in L and then concatenating
the resulting strings together. Using this notation, the main result can be stated as follows.

Theorem 6 (Universal cycles using reflected cool-lex order).

The string R(
−→
C (n)) is a universal cycle for Πn(n + 1).

This result follows from Lemma 1 that is stated informally as follows: For every value of j

satisfying 0 ≤ j ≤ n − 1, there are consecutive strings in
−→
C (n) that contain the last j symbols

of p as a prefix of one string, and the first (n − 1) − j symbols as a suffix of the previous string.
To illustrate this lemma, let n = 7 and p = 254367 ∈ Π6(7), and consider the following examples

involving ordered pairs of strings, s followed by t, within
−→
C (7)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

s : 2546371 1725463 1372546 1637254 3467125 3546712

t : 7251463 3712546 6371254 4637125 5463712 1254637.

The extremal examples involve only one string, otherwise t =
−−→
cool(s). Furthermore, the underlined

string wrapping around from the end s to the beginning of t is equal to p. For example, in the
j = 1 column the underlined string contains five symbols from s and one symbol from t. To see

how these examples relate to universal cycles, consider R(
−→
C (7)). Since the value of n + 1 = 8 is



appended to the front of every string within the original list
−→
C (7), then the above cases ensure

that the following substrings are contained within R(
−→
C (7))

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

8254637 2546387 2546837 2548637 2584637 2854637 2546378.

In other words, the above substrings include every possible way of inserting 8 into p = 254367 to
obtain a 7-permutation of 〈8〉 that contains 8. By repeating the same argument for every p ∈ Π6(7),

the result is that R(
−→
C (7)) must contain every 7-permutation of 〈8〉 that contains 8. Since the 7-

permutations of 〈8〉 that do not contain 8 can be obtained directly from the original strings in
−→
C (7), then R(

−→
C (7)) must be a universal cycle for Π7(8).

In general, the same argument shows how Theorem 6 follows from Lemma 1. The proof of Lemma
1 is somewhat tricky and involves several cases. For this reason, the (non-extremal) examples above
are now restated along with additional information pertaining to the proof.

j = 1 j = 2 j = 3 j = 4 j = 5

s : 1725463 1372546 1637254 3467125 3546712

t : 7251463 3712546 6371254 4637125 5463712

k = 1 k = 1 k = 2 k = 1 k = 2

case 2) case 3a) case 3a) case 1) case 1).

In all of these examples, p = 254367 and x = 1 is its symbol missing from 〈7〉. The underlined
portion of s represents pj+2pj+3 · · · pn. Similarly, the underlined portion of t represents p1p2 · · · pj .
Finally, k is the length of !(p1p2 · · · pj) and is shown above.

Lemma 1. Suppose p ∈ Πn−1(n) and j is within 0 ≤ j ≤ n−1. Then, there exists s = s1s2 · · · sn ∈

Π(n) followed by t = t1t2 · · · tn ∈ Π(n) in
−→
C (L) such that

sj+2sj+3 · · · snt1t2 · · · tj = p. (7)

In other words, there exist two consecutive strings in
−→
C (n) whose concatenation contains p as a

substring, and moreover, the substring uses j symbols from the second string.

Proof. The proof of this lemma may be found in the appendix.

4 Concluding Remarks

This paper has provided the third explicit universal cycle for the (n− 1)-permutations of 〈n〉, and
for this reason it is natural to ask which universal cycle is “best”. One way of differentiating the
various solutions is to consider the sum of the binary string representation. For example, in the
cycling application rotations of length n are somewhat simpler than rotations of length n− 1, and
so it would be desirable to minimize the sum of the binary representation.

Each of the explicit universal cycles also rely upon n being a periodic symbol. For this reason
it is natural to ask if there is a construction that does not use a periodic symbol. (In general, it is
not possible for a universal cycle of Πn−1(n) to have two or more periodic symbols.)

Finally, the explicit universal cycles also hint at a relationship between cyclic Gray codes of
Π(n − 1) using prefix-shifts of length n and n − 1 and the construction of universal cycles of
Πn−1(n). Is it possible that these Gray codes (with an added condition) could always be extended
to universal cycles using a periodic symbol?
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A Additional Proofs

In this appendix we provide a proof of Lemma 1 which is restated below. We will need the idea of
a cool-left shift.

Definition 4 (Cool left-shift (
←−−
cool)). Let s = s1 . . . sn and k = !(s). Then,

←−−
cool(s) =











⊳(s, k + 1) if k ≤ n− 2 and sk+2 > sk (8a)

⊳(s, k + 2) if k ≤ n− 2 and sk+2 ≤ sk (8b)

⊳(s, n) otherwise (if k ≥ n− 1). (8c)

By repeating this operation every permutation of a given set is guaranteed to be visited exactly
once [20]. (In fact, the operation works for the permutations of any multiset, and variations of this
operation have been used to generate combinations [14] and balanced parentheses and binary trees

[15].) For example, the following list of Π(3) is circularly generated by repeated applications of
←−−
cool

132 312 231 123 213 321. (9)

Since the definition only involves the relative order of the symbols, then the set of symbols need not

be {1, 2, . . . , n}. One important aspect of
←−−
cool is that it does not change certain suffixes as stated

by the following lemma.

Lemma 2 (Cool left-shift invariant). Suppose s = s1s2 · · · sn ∈ Π(n) and !(s) = k. Then,

←−−
cool(s1s2 · · · sn) =

←−−
cool(s1s2 · · · sk+2) · sk+3sk+4 · · · sn.

In other words, applying
←−−
cool to a string is equivalent to applying

←−−
cool to its first k + 2 symbols and

then appending its remaining n−(k+2) symbols, where k represents the length of the non-increasing
prefix.

Lemma 3. Suppose p ∈ Πn−1(n) and j is within 0 ≤ j ≤ n−1. Then, there exists s = s1s2 · · · sn ∈

Π(n) followed by t = t1t2 · · · tn ∈ Π(n) in
−→
C (L) such that

sj+2sj+3 · · · snt1t2 · · · tj = p.

In other words, there exist two consecutive strings in
−→
C (n) whose concatenation contains p as a

substring, and moreover, the substring uses j symbols from the second string.

Proof. Let x be the symbol that is missing from {1, 2, . . . , n} within p. The proof first considers
the extreme values of j, namely j = 0 and j = n − 1. According to (7), the substring p must be
contained entirely within s or entirely within t. That is,

sj+2sj+3 · · · snt1t2 · · · tj = s2s3 · · · sn when j = 0

sj+2sj+3 · · · snt1t2 · · · tj = t1t2 · · · tn−1 when j = n− 1.

For the j = 0 case, consider s = x · p. Certainly s ∈ Π(n) since p ∈ Πn−1(n). Furthermore,

s2s3 · · · sn = p

and so this case is proven by s = x · p (and t =
−−→
cool(s)). For the j = n− 1 case, consider t = p · x.

Certainly t ∈ Π(n) since p ∈ Πn−1(n). Furthermore,

t1t2 · · · tn−1 = p



and so this case is proven by t = p · x (and s =
←−−
cool(p)).

In the remaining cases, the substring p must overlap the two strings s and t. To facilitate the
arguments let

p = pj+2pj+3 · · · pnp1p2 · · · pj .

The indexing is chosen in this way so that it will match up with the indexing within the values
found for s and t. The result is now proven for each value of j by finding s = s1s2 · · · sn ∈ Π(n)

where t = t1t2 · · · tn =
−−→
cool(s) such that

sj+2sj+3 · · · sn = pj+2pj+3 · · · pn and t1t2 · · · tj = p1p2 · · · pj. (10)

Let k = |!(p1p2 · · · pj)|. Notice that k ≤ j. The proof is now divided into three cases depending on
the value of k. The third case is divided into two subcases.

Case 1: k ≤ j − 2. Consider

s =
←−−
cool(p1p2 · · · pj) · x · pj+2pj+3 · · · pn

t = p1p2 · · · pj · x · pj+2pj+3 · · · pn

Certainly s, t ∈ Π(n) since p ∈ Πn−1(n). Furthermore, s and t satisfy (10). Therefore, it remains

only to prove that t =
−−→
cool(s) which is done below

−−→
cool(s)

=
−−→
cool(

←−−
cool(p1p2 · · · pj) · x · pj+2pj+3 · · · pn)

=
−−→
cool(

←−−
cool(p1p2 · · · pj · x · pj+2pj+3 · · · pn)) by Lemma 2 and k ≤ j − 2

= p1p2 · · · pj · x · pj+2pj+2 · · · pn

= t.

Case 2: k = j. Consider

s = x · p1p2 · · · pj · pj+2pj+3 · · · pn

t =
−−→
cool(s).

Certainly s, t ∈ Π(n) since p ∈ Πn−1(n). Furthermore, since t =
−−→
cool(s) then s and t are consecu-

tive within
−→
C (n). Therefore, it remains only to prove that s and t satisfy (10). To prove this fact,

notice that k = j implies that p1p2 · · · pj is non-increasing. Therefore, when applying
−−→
cool to s, the

first symbol x will be right-shifted at least past all of the symbols in p1p2 · · · pj. Therefore,

t1t2 · · · tj = p1p2 · · · pj

and so s and t satisfy (10).

Case 3a): k = j − 1 and x < pj−1. Consider

s = x · p1p2 · · · pj−1pj · pj+2pj+3 · · · pn

t = p1p2 · · · pj−1pj · x · pj+2pj+3 · · · pn.



Certainly s, t ∈ Π(n) since p ∈ Πn−1(n). Furthermore, s and t satisfy (10). Therefore, it remains

only to prove that t =
−−→
cool(s). In order to do this, first notice that k = j−1 implies that p1p2 · · · pj−1

is non-increasing but p1p2 · · · pj is not. Therefore,

|!(s2s3 · · · sn)| = |!(p1p2 · · · pj−1pj · pj+2pj+3 · · · pn)| = j − 1. (11)

Therefore,

−−→
cool(s)

=
−−→
cool(x · p1p2 · · · pj−1pj · pj+2pj+3 · · · pn)

= ⊲(x · p1p2 · · · pj−1pj · pj+2pj+3 · · · pn, j + 1) by (11), x < pj−1, and (5b)

= −−−−−−−−−−−−→x · p1p2 · · · pj−1pj · pj+2pj+3 · · · pn

= p1p2 · · · pj−1pj · x · pj+2pj+3 · · · pn

= t.

Case 3b): k = j − 1 and x > pj−1. Consider

s = pj · p1p2 · · · pj−1 · x · pj+2pj+3 · · · pn

t = p1p2 · · · pj−1 · pj · x · pj+2pj+3 · · · pn.

Certainly s, t ∈ Π(n) since p ∈ Πn−1(n). Furthermore, s and t satisfy (10). Therefore, it remains

only to prove that t =
−−→
cool(s). In order to do this, first notice that k = j − 1 implies that

pj > pj−1. (12)

Second, j = k also implies that p1p2 · · · pj−1 is non-increasing, and p1p2 · · · pj is not since since
x > pj−1. Therefore,

|!(s2s2 · sn)| = |!(p1p2 · · · pj−1 · x · pj+2pj+3 · · · pn)| = j − 1. (13)

Therefore,

−−→
cool(s)

=
−−→
cool(pj · p1p2 · · · pj−1 · x · pj+2pj+3 · · · pn)

= ⊲(pj · p1p2 · · · pj−1 · x · pj+2pj+3 · · · pn, j) by (13), (12), and (5a)

= −−−−−−−−−−−→pj · p1p2 · · · pj−1 · x · pj+2pj+3 · · · pn

= p1p2 · · · pj−1 · pj · x · pj+2pj+3 · · · pn

= t.

The proof is now complete since all possible values of k and j satisfying k ≤ j have been
considered.

B Implementations

This section provides a C-implementation for generating 7-order for the permutations of 〈n〉 and the
associated bell-ringer shorthand universal cycle for the permutations of 〈n + 1〉, as well as cool-lex
order (using right-shifts) for the permutations of 〈n〉 and its associated shorthand universal cycle



for the permutations of 〈n + 1〉. The program should be saved as perms.c. As presented, “perms
n” will generate cool-lex order for the permutations of 〈n〉. Comment out “#define PERMS” to
generate the shorthand universal cycle, and comment out “#define COOL” to generate 7-order
(or the bell-ringer shorthand universal cycle). Regardless of these options, the program will run in
O(n!)-time (excluding the printing in the visit() routines).

#include<stdlib.h>

#include<stdio.h>

#define PERMS

#define COOL

void bellperms();

void coolperms();

void visit();

void usage_error();

int *perm;

int n;

void main(int argc, char *argv[]) {

int x;

if (argc == 1) {usage_error();}

n = atoi(argv[1]);

if (n < 1) {usage_error();}

perm = (int *)malloc((n+1)*sizeof(int));

for(x=0; x<=n; x++) {perm[x] = n+1-x;}

#ifdef COOL

coolperms();

#else

bellperms();

#endif

}

void coolperms() {

int x;

int first;

first = perm[1];

while (1) {

visit();

first = perm[1];

perm[1] = perm[2];

for (x=2; x<n && perm[x]>=perm[x+1]; x++) {perm[x]=perm[x+1];}

if (first == 1 && x==n) {perm[x] = first; return;}

if (x<n && first<perm[x]) {perm[x]=perm[x+1]; x++;}

perm[x] = first;

}

}

void bellperms() {

int h,i,j,x,temp;

h = 1;

while (1) {

visit();

if (h == 1) {

for (x=1; x < n; x++) {perm[x] = perm[x+1];}

perm[n] = n;

h = n;

} else if (h > 2) {



perm[h] = perm[h-1];

perm[h-1] = n;

h--;

} else {

temp = perm[1];

perm[1] = perm[2];

for (i=2; i < n && perm[i+1] == n-i+1; i++) {

perm[i] = n-i+1; // printf("i: %d \n", i);

}

if (i == n) {

return;

}

perm[i] = temp;

if (perm[i] == n-i+1) {

for (x=i; x < n; x++) {perm[x] = perm[x+1];}

perm[n] = n-i+1;

} else {

for (j=i; perm[j] < n-i+1; j++);

temp = perm[j-1];

perm[j-1] = perm[j];

perm[j] = temp;

}

h = 1;

}

}

}

void visit() {

int x;

#ifndef PERMS

printf("%d ", perm[0]);

#endif

for (x=1; x<=n; x++) {

printf("%d ", perm[x]);

}

#ifdef PERMS

printf("\n");

#endif

}

void usage_error()

{

printf("usage: perms n for permutations of [n] (or shorthand Ucycle for permutationso of [n+1]).\n");

exit(EXIT_FAILURE);

}


