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Abstract

A Venn diagram is simple if at most two curves intersect at any given point. A
recent paper of Griggs, Killian, and Savage [Elec. J. Combinatorics, Research Pa-
per 2, 2004] shows how to construct rotationally symmetric Venn diagrams for any
prime number of curves. However, the resulting diagrams contain only

(
n

bn/2c
)

inter-
section points, whereas a simple Venn diagram contains 2n − 2 intersection points.
We show how to modify their construction to give symmetric Venn diagrams with
asymptotically at least 2n−1 intersection points, whence the name “half-simple.”

1 Introduction

Following Grünbaum [5], a Venn diagram for n sets is a collection of n simple closed
curves in the plane, {Θ1, Θ2, . . . , Θn}, with the property that for each S ⊆ {1, 2, . . . , n}
the region ⋂

i∈S

int(Θi) ∩
⋂

i 6∈S

ext(Θi)

is nonempty and connected. Here int(Θi) and ext(Θi) denote the open interior and open
exterior, respectively, of Θi. A Venn diagram is simple if no 3 curves have a common point
of intersection. In a Venn diagram the curves are assumed to be finitely intersecting. A
Venn diagram is rotationally symmetric if there is a point p such that each of the rotations
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of Θ1 about p by an angle of 2πi/n, 0 ≤ i ≤ n − 1, coincides with one of the curves
Θ1, Θ2, . . . , Θn. A Venn diagram is monotone if every region enclosing k curves, with
0 < k < n, is adjacent to a region enclosing k − 1 curves and a region enclosing k + 1
curves. Monotone Venn diagrams are precisely those that can be drawn with all curves
convex, as shown in [1].

Venn diagrams for n sets with rotational symmetry cannot exist unless n is prime
(Henderson [8]) and it is shown in [4] that they do exist for all prime n, by a general con-
struction. The symmetric diagrams in [4] contain

(
n

bn/2c
)

intersection points, with exactly
n points of intersection through which all curves pass. Such diagrams were introduced
by Ruskey and Chow [9], who provided examples of them for n = 5 and n = 7. In [7]
Hamburger constructed a symmetric Venn diagram for n = 11 with this property.

It follows from Euler’s formula (V − E + F = 2) that a simple Venn diagram has
2n − 2 vertices. The diagrams constructed in [4], both symmetric and non-symmetric,
are monotone, and among monotone Venn diagrams they contain the least number of
vertices, namely:

(
n

bn
2
c
)

∼ 2n

√
n

. (1)

This was shown in [2] to be minimum for monotone Venn diagrams.
Simple monotone non-symmetric diagrams exist for all n, but simple symmetric Venn

diagrams are known only for n = 3, 5 and 7: see [9] for some examples. So, we are now
motivated to ask if we can we find simple symmetric Venn diagrams for all prime n, or at
least ones that are “more simple”, where as a measure of simplicity, we use the number
of vertices in the Venn diagram.

In this paper we show that for n prime, we can in fact add vertices to the diagrams
in [4] to produce symmetric diagrams in which the number of vertices is asymptotically
at least 2n−1. The technique used in [4] makes use of some novel observations about the
Greene-Kleitman symmetric chain decomposition of the Boolean lattice [3]. The paper
[4] also includes a construction, for any n, of monotone (non-symmetric) Venn diagrams
with the minimum number of vertices. We show that when the same method of “adding
vertices” is applied to this case, the resulting Venn diagrams have, surprisingly, exactly
2n−1 vertices. In both cases, to accomplish this we manipulate the dual graph of the
diagram, which has 2n vertices, each of which is identified with a bitstring of length
n. Since vertices in a graph correspond to faces in the dual, we need to modify the
construction so that the dual has more faces.

The survey [9] introduced the idea of a separable vertex as a way of simplifying a Venn
diagram by introducing more vertices without destroying the Venn diagram property.
Adding an edge to this dual graph corresponds to separating a vertex of the Venn diagram
into two vertices by pulling some curves out of the vertex. A face in the dual that cannot
be subdivided into several smaller faces corresponds to a vertex that is not separable in
the Venn diagram; if all vertices are not separable the diagram is termed rigid. Simple
diagrams are trivially rigid. Thus the technique of adding as many faces as possible to the
dual graph corresponds to separating as many vertices as possible in the Venn diagram
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until it becomes rigid.
The next section describes the Venn diagram construction from [4] which we refer to

as the GKS construction, and uses an example to illustrate the general idea. In Section
3 we prove a theorem used to subdivide faces in dual graphs into many 4-faces, each of
which corresponds to the intersection of two curves in the Venn diagram. In the remaining
sections, this theorem is then applied to the non-symmetric monotone diagrams and then
the symmetric diagrams to calculate how many new faces, and thus vertices, can be added
in each case to the diagrams.

2 The GKS Construction

The Hasse diagram of the Boolean lattice Bn, when viewed as a graph, is isomorphic to
the n-cube, the graph whose vertices are the n-bit strings, with two vertices joined by an
edge when they differ in only one bit. The isomorphism maps a set S ⊆ {1, . . . , n} to the
n-bit string with 1 in position i iff i ∈ S. The weight of a bit string is the number of ones
it contains.

A subgraph of the n-cube is called monotone if every vertex of weight d is adjacent to
a vertex of weight d + 1 (if d < n) and a vertex of weight d− 1 (if d > 1).

The GKS construction is based on the following Theorem, proved in [4].

Theorem 1 If G is a plane, monotone, spanning subgraph of the n-cube, the dual of G
is a (monotone) Venn diagram.

To construct “simpler” Venn diagrams, the plan to is to get more vertices in the Venn
diagram by adding more edges in the dual. We start with an intermediate construction
that works for all n to make the GKS construction “simpler” (but not symmetric) and
then show how to modify this when n is prime to make it symmetric as well. In the
remainder of this section, we review the GKS construction.

In a binary string, regard each ‘1’ as a right parenthesis and each ‘0’ as a left parenthesis
and match parentheses in the usual way. For example, in the string

1 0 0 1 0 0 1 1 1 1 0 0 1 0

the ‘1’ bits in positions 4, 7, 8, 9, and 13 are matched, respectively, with the ‘0’ bits in
positions 3, 5, 6, 2, 12. The ‘1’ in position 10 is unmatched and the ‘0’ bits in positions
11 and 14 are unmatched.

For every n > 0, define the rooted tree Tn to be the tree whose nodes are the n-bit
strings with no unmatched 1, and where the parent of node x, p(x), is obtained from x by
changing the last 1 in x to 0. Note p(x) is in Tn when x is, since if x has no unmatched
1, the same must be true of p(x). See Figure 1 for T5.

Given Tn, we now grow each node x of Tn into a chain Cx of n-bit strings using the
Greene-Kleitman successor rule [3]:

Starting with a string x with no unmatched 1, change the first unmatched 0
to 1 to get its successor, y. Change the first unmatched 0 in y to 1 (if any) to
get its successor. Continue until a string with no unmatched 0 is reached.
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00000

01010 01001

00010

0010100110 00011

0000101000 00100

Figure 1: The rooted tree T5 of 5-bit strings with no unmatched 1.

As an example, by this rule node 00100 in T5 is expanded into the chain C00100:

C00100 : 00100 → 10100 → 10110 → 10111

and the complete list of chains for nodes in T5 is:

C00000 : 00000 → 10000 → 11000 → 11100 → 11110 → 11111
C01000 : 01000 → 01100 → 01110 → 01111
C01010 : 01010 → 01011
C01001 : 01001 → 01101
C00100 : 00100 → 10100 → 10110 → 10111
C00110 : 00110 → 00111
C00101 : 00101 → 10101
C00010 : 00010 → 10010 → 11010 → 11011
C00011 : 00011 → 10011
C00001 : 00001 → 10001 → 11001 → 11101

Greene and Kleitman showed in [3] that this gives a symmetric chain decomposition of
the Boolean lattice. That is, (1) each of the resulting paths in the n-cube is a chain in
Bn: each element is covered in Bn by its successor; (2) in each chain, the weights of the
first and last elements sum to n; and (3) every n-bit string is in exactly one of the chains.

By definition of Tn, the first elements of Cx and Cp(x) differ in only one bit. In [4] it
is shown that the last elements of Cx and Cp(x) also differ in only one bit and the chains
are used to get a Venn diagram as follows.

We use the chain decomposition derived from Tn to build a plane graph P (Tn) that
forms the dual of the final Venn diagram. Embed the chains {Cx|x ∈ Tn} vertically in
the plane, one unit apart and centered about some horizontal line, by preorder in Tn; that
is, (1) for every x, Cx precedes Cy if y is a descendant of x in Tn and (2) regarding the
children of x as ordered x1, ..., xt for 1 ≤ i ≤ t − 1, chains for descendants of xi must
appear before chains for descendants of xi+1. (See Figure 2, ignoring the green edges).
In addition, for each x of positive weight, whenever x is the first child of its parent p(x)
we include the edge joining the first elements of Cx and Cp(x) and the last elements of Cx
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10000

11100

11110

11111

00000

11000

01000

01100

01111

01010 01001

01101

00100

10100 00110

00111

00101

10101

10111

0101101110 10110

00010

10010

11010

11011

00011

10011

00001

10001

11001

11101

Figure 2: The plane graph P (T5), with attaching edges drawn in green.

and Cp(x) (these edges must always exist, as noted above). Henceforth we refer to these
edges, shown as the green edges in Figure 2, as the attaching edges for Cx.

As shown in [4], the resulting graph P (Tn) is a plane, monotone, spanning subgraph of
the n-cube, so by Theorem 1, its dual is a Venn diagram. Figure 3 illustrates the process
of taking the dual of P (T4), and Figure 4 shows the resulting Venn diagram for 4 sets. In
this construction, the number of vertices in the resulting Venn diagram will be the same
as the number of chains in the symmetric chain decomposition of the Boolean lattice Bn,
which is

(
n

bn/2c
)
.

Moving now to prime n, the notion of block code for strings under rotation was intro-
duced in [4] and was the key breakthrough in showing the existence of symmetric Venn
diagrams for all prime n. Define the block code β(x) of a binary string x as follows. If x
starts with 0 or ends with 1, then β(x) = (∞). Otherwise, x can be written in the form:

x = 1a10b11a20b2 · · · 1at0bt

for some t > 0, where ai > 0, bi > 0, 1 ≤ i ≤ t, in which case,

β(x) = (a1 + b1, a2 + b2, . . . , at + bt).

The n rotations of x, where x has length n, are the n strings reachable by applying
the circular permutation (12 · · ·n) to x. As an example, the block codes of the string
1110101100010 and all of its rotations are shown below.
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{3,4}

{1}

{1,3,4}

{1,2,4}

{2,3,4}

{2,3}

{}

{1,2}

{1,2,3,4}

{4}

{1,4}

{1,2,3}

{1,3}

{2}

{2,4}

{3}

Figure 3: Construction of dual of P (T4).

{3,4}

{1}

{1,3,4}

{1,2,4}

{2,3,4}

{2,3}

{}

{1,2}

{1,2,3,4}

{4}

{1,4}

{1,2,3}

{1,3}

{2}

{2,4}

{3}

Figure 4: Venn diagram for n = 4.
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1010100 1001100

10010001010000

1000000

Figure 5: The rooted tree S7 of 7-bit rotational equivalence class representatives with one
unmatched 1.

bit string block code bit string block code
1110101100010 (4, 2, 5, 2) 1100010111010 (5, 2, 4, 2)
0111010110001 (∞) 0110001011101 (∞)
1011101011000 (2, 4, 2, 5) 1011000101110 (2, 5, 2, 4)
0101110101100 (∞) 0101100010111 (∞)
0010111010110 (∞) 1010110001011 (∞)
0001011101011 (∞) 1101011000101 (∞)
1000101110101 (∞)

When n is prime, every n-bit string, other than 00 · · · 00 and 11 · · · 11, has n distinct
rotations. Similarly, it is shown in [4] that when n is prime, no two different rotations
of an n-bit string can have the same finite block code. Assuming that block codes are
ordered lexicographically, in each equivalence class of n-bit strings under rotation, the
unique string with minimum block code can be chosen as the representative.

For prime n, define the rooted tree Sn to be the tree whose nodes are the n-bit strings
x with exactly one unmatched 1 and with β(x) ≤ β(y) for any rotation y of x. Note that
the unmatched 1 must appear in the leftmost position of x. The parent of node x, p(x),
is obtained from x by changing the last 1 in x to 0. We note that p(x) is in Sn when x
is, since it is shown in [4] that (i) if x has exactly one unmatched 1, the same is true for
p(x) and (ii) if β(x) is minimal under all rotations of x, then β(p(x)) is also. See Figure
5 for S7.

Given Sn, we now grow each node x of Sn into a chain Cx of n-bit strings using the
following variation of the Greene-Kleitman construction[3]:

Start with a string x which has one unmatched 1 and lexicographically smallest
block code among all of its rotations (i.e., a node in Sn). If there is more than
one unmatched 0 in x, change the first unmatched 0 to 1 to get its successor,
y. If there is more than one unmatched 0 in y, change the first unmatched 0
in y to 1 to get its successor. Continue until a string with only one unmatched
0 is reached.
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Note that a node x and its successor y have the same block code, so if x has the
minimum block code among all of its rotations, then so does y. Thus every element of Cx

is the (minimum block code) representative of its equivalence class under rotation.
The list of chains for nodes in S7 is:

C1000000 : 1000000 → 1100000 → 1110000 → 1111000 → 1111100 → 1111110
C1010000 : 1010000 → 1011000 → 1011100 → 1011110
C1010100 : 1010100 → 1010110
C1001000 : 1001000 → 1101000 → 1101100 → 1011110
C1001100 : 1001100 → 1101100 → 1101110.

It is shown in [4] that this gives a symmetric chain decomposition of the subposet of
the Boolean lattice induced by the representatives of equivalence classes of n-bit strings
under rotation (with finite block code). That is, (1) each of the resulting paths is a
chain in Bn, (2) each element of each chain is the (minimum block code) representative
of its equivalence class under rotation, (3) in each chain, the weights of the first and last
elements sum to n; and (4) for every n-bit string x ∈ Bn−{0n, 1n}, the rotation of x with
lexicographically block code smallest rotation is in exactly one of the chains.

By definition of Sn, the first elements of Cx and Cp(x) differ in only one bit. In [4] it is
shown that the last elements of Cx and Cp(x) also differ in only one bit and the chains are
used to get a Venn diagram as follows. As before, embed the chains {Cx|x ∈ Sn} vertically
in the plane, one unit apart and centered about some horizontal line, by preorder in Sn,
including the attaching edges for each Cx. As shown in [4], the resulting graph, which we
call P (Sn), is a plane, monotone, subgraph of the n-cube, but it only contains about 1/n
of the the vertices of the n-cube. What we need is a plane, monotone, spanning subgraph
of the n-cube, so that by Theorem 1, its dual is a Venn diagram. In addition, we want
rotational symmetry.

This is done in [4] by constructing a graph R(P (Sn)) as follows. Start by making n
copies of P (Sn), and adding n copies each of the vertices 0n and 1n adjacent to each of
the copies of 10n−1 and 1n−10, which start and finish the longest chain. In the ith copy
of P (Sn), each vertex x is replaced by the rotated vertex σi(x), where σi(x1x2 · · ·xn) =
xi+1xi+2 · · ·xnx1 · · · xi. Each copy is embedded (symmetrically) in a 1/n-th pie slice in
the plane, with the vertices 1n coinciding at the center and the vertices 0n coinciding at
the point at infinity. Now, R(P (Sn)) is a plane, monotone, spanning subgraph of the
n-cube, so by Theorem 1, its dual is a Venn diagram. Finally, the dual of R(P (Sn)) is
constructed, preserving the symmetry. The process is illustrated in Figure 6 for n = 5,
proceeding from P (S5) in Figure 6a through R(P (S5)) in 6b to the dual of R(P (S5))
in 6d.

This construction yields rotationally symmetric Venn diagrams in which the number
of vertices is the same as the number of chains in a symmetric chain decomposition of
Bn,

(
n

bn/2c
)
. In the next section we show a systematic way to add faces to the dual, and

thereby vertices to the Venn diagram.
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0
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0
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0
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01
1

01
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1

00000
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00110
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00
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(c) (d)

Figure 6: Building the symmetric 5-Venn diagram from P (S5).
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3 Quadrangulating Faces

In this section we show that in the chain graph, P (Tn), any face formed by a chain and
its first child can be quadrangulated (i.e. decomposed into faces bordered by 4 edges,
that is, 4-faces) by adding non-crossing edges of the n-cube. Quadrangulating all such
faces results in a plane monotone spanning subgraph Q(Tn) of the n-cube. By Theorem
1, the dual of Q(Tn), Q(Tn)∗, is a Venn diagram. Since Q(Tn) has more faces than
P (Tn), the Venn diagram Q(Tn)∗ has more vertices than P (Tn)∗. Similarly, for prime n
we show that in the chain graph P (Sn), any face formed by a chain and its first child
can be quadrangulated by adding non-crossing edges of the n-cube and use this to get
a symmetric Venn diagram with more vertices. In Sections 4 and 5 we count how many
vertices are added to the Venn diagrams which result from quadrangulating these faces
in P (Tn) and P (Sn).

Let |C| denote the length of a chain C, that is, its number of edges.

Theorem 2 Let w 6= 0n be a node in Tn and let x be its parent. If chains Cx, Cw are
embedded consecutively in P (Tn), the face bounded by the chains Cw, Cx, and the attaching
edges of Cx can be quadrangulated into |Cw|+1 4-faces by adding |Cw| edges of the n-cube
(as shown in Figure 7).

Proof. Since w is a node of Tn, w has no unmatched 1. Let b be the position of the last
1 in w and let a be the position of the 0 to which it is matched. Then w has the form
w = y10n−b and x = y0n−b+1. Note (i) that a < b and w has no unmatched 0 between a
and b (else the 1 in position b would have preferred it to the 0 in position a.) Also note
(ii) that in x position a and b both contain unmatched 0 bits (there is no 1 to the right of
b in x; in w, no 1 in y matched to the 0 in position a, so this remains true in x.) Finally,
note (iii) that if U0(y) denotes the set of positions of the unmatched 0 bits in a string y,
then U0(x) is the disjoint union U0(x) = U0(w) ∪ {a, b}.

Let U0(w) = {u1, u2, . . . . . . um}, where u1 < u2 < · · · < um. By (i) above, there exists
i, 0 ≤ i ≤ m such that u1 < u2 < · · · < ui < a < b < ui+1 < · · · < um. By (iii),
U0(x) = {u1, u2, . . . , ui, a, b, ui+1, ui+2, . . . , um}.

For S ⊆ {1, . . . , n}, Define IS to be the n-bit string with i-th bit ‘1’ iff i ∈ S. Then
the chain grown from w by the Greene-Kleitman successor rule (change first unmatched
0 to 1) is the chain of length m:

Cw : Cw(0), Cw(1), . . . , Cw(m),

where Cw(0) = w and for 1 ≤ j ≤ m,

Cw(j) = w + I{u1,u2,...,uj}.

Here ‘+’ denotes bitwise or. The chain grown from x is:

Cx : Cx(0), Cx(1), . . . , Cx(m + 2),
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Cw(0) = w

u1

Cw(1)

u2

Cw(2)

Cw(i + 1)

ui+1

Cw(i)

Cw(m− 1)

um

Cw(m)Cx(m + 1)

Cx(m + 2)

Cx(i + 3)

Cx(i + 2)

Cx(i + 1)

Cx(i)

Cx(2)

a

a

a

a

b

b

b

bu1

u2

a

b

ui+1

um

Cx(0) = x

Cx(1)

Figure 7: Quadrangulation of the face bordered by the chain Cw, its parent chain Cx, and
the two attaching edges.
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Figure 8: The plane graph P (T5) with quadrangulated faces.

where

Cx(j) =





x if j = 0
x + I{u1,u2,...,uj} if 1 ≤ j ≤ i
x + I{u1,u2,...,uj−1} + I{a} if j = i + 1
x + I{u1,u2,...,uj−2} + I{a,b} if i + 2 ≤ j ≤ m + 2

Then for 0 ≤ j ≤ i, Cw(j) and Cx(j) are adjacent in the n-cube, since they differ only
in bit b, where w and x differ. For i ≤ j ≤ m, Cw(j) and Cx(j + 2) are adjacent in the
n-cube: they differ only in bit a, since

Cx(j + 2) = x + I{u1,u2,...,uj} + I{a,b} = w + I{u1,u2,...,uj} + I{a} = Cw(j) + I{a}.

Finally, if chains Cx, Cw are embedded consecutively in P (Tn), the m edges

(Cx(1), Cw(1)), (Cx(2), Cw(2)), . . . , (Cx(i), Cw(i)), (Cx(i + 2), Cw(i)),
(Cx(i + 3), Cw(i + 1)), . . . , (Cx(m + 1), Cw(m− 1))

can be added without crossings to create m + 1 faces interior to the original face. 2

Figure 8 shows the plane graph that results if all faces of P (T5) bounded by chains
corresponding to a node and its first child in T5 are quadrangulated; the added edges are
shaded in the figure.

We get a similar result for the plane graph P (Sn).

Theorem 3 Let w 6= 10n−1 be a node in Sn and let x be its parent. If chains Cx, Cw

are embedded consecutively in P (Sn), the face bounded by the chains Cw, Cx, and the
attaching edges of Cx can be quadrangulated into |Cw|+ 1 4-faces by adding |Cw| edges of
the n-cube.
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Figure 9: The plane graph P (S7) with quadrangulated faces.

Proof. The same proof works as for Theorem 2 after observing that for Theorem 3, if
U0(w) = {u1, u2, . . . um}, then Cw is the chain:

Cw : Cw(0), Cw(1), . . . , Cw(m− 1).

2

Figure 9 shows the plane graph that results if all faces of P (S7) bounded by chains
corresponding to a node and its first child in S7 are quadrangulated; the added edges are
shaded in the figure.

4 Half-Simple Venn Diagrams for All n

In this section we show that in P (Tn), quadrangulating every face corresponding to a
node and its first child gives a Venn diagram with 2n−1 vertices. Since quadrangulating
preserves the property that P (Tn) is a plane, monotone, spanning subgraph of the n-cube,
the dual is still a Venn diagram. It remains only to count the number of faces added to
P (Tn) by quadrangulating.

We make the following definitions.

• Let Nn be the total number of nodes in Tn. Each node corresponds to one chain
in the symmetric chain decomposition of Bn, and the number of chains is just the
number of elements at the middle level of Bn : Nn =

(
n
bn

2
c
)
.

• Let Nn(d) denote the number of nodes of weight d in Tn. (Nodes of weight d are
at depth d in Tn.) Then Nn(d) = 0 if d ≥ bn

2
c. Since the chain starters at level d
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in the Boolean lattice are those strings of weight d which do not belong to chains
started by strings of smaller weight, we have

Nn(d) =





(
n
d

)− (
n

d−1

)
0 < d ≤ bn

2
c ,

1 if d = 0,
0 otherwise.

(2)

Note that
(

n
d

) − (
n

d−1

)
= n−2d+1

n−d+1

(
n
d

)
is a member of the well-studied set of “ballot

numbers”.

• Let Ln(d) denote the number of nonleaves of weight d in Tn.

If a node x has a child in Tn, and if w is its first child, then in the plane graph P (Tn),
Cw is embedded immediately to the right of Cx. By Theorem 2, we can add |Cw| = |Cx|−2
edges to P (Tn) to quadrangulate the face bounded by Cx, Cw, and the attaching edges of
Cw. Thus for every non-leaf node x in Tn, chain Cx is the left boundary of a face in P (Tn)
that can be quadrangulated to add |Cx| − 2 extra faces to P (Tn). We wish to count the
number Fn of such faces added:

Fn =
∑

nonleaf nodes x in Tn

(|Cx| − 2). (3)

Observe that if x ∈ Nn(d), then |Cx| = n − 2d, since |C0n| = n and for y 6= 0n in Tn,
|Cp(y)| = |Cw|+ 2. Then

Fn =

bn
2
c∑

d=0

(n− 2d− 2)Ln(d). (4)

Our goal is to show that Fn = 2n−1−(
n
bn

2
c
)
. We first need to be able to compute Ln(d).

Lemma 1 If n > 1 and 0 ≤ d ≤ bn−1
2
c, then Ln(d) =

(
n−1

d

)− (
n−1
d−1

)
, and 0 otherwise.

Proof. We show that Ln(d) = Nn−1(d) by showing that the mapping f(x) = x0 is a
bijection from the set of nodes in Tn−1 of weight d to the set of non-leaves in Tn of weight
d. The result follows then from (2).

If x is a node of weight d in Tn−1, x has no unmatched 1, so neither does x0, so x0 is
a node of weight d in Tn. To see that x0 is a nonleaf, note that since 2d < n, x has an
unmatched 0, so x1 is in Tn and p(x1) = x0. Clearly f is one-to-one. To see that f is
onto, let y be a nonleaf node of weight d in Tn. Then y has a child z and z has the form
z = α10i for some i ≥ 0. Since z is in Tn, α has no unmatched 1 and y = p(α10i) = α0i+1.
Thus, α0i is in Tn−1 and y = f(α0i). 2

Lemma 2 For n ≥ 2,
bn

2
c∑

d=0

Ln(d) =

(
n− 1

bn
2
c − 1

)
.
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Proof. Note that the summand is 0 if d = bn/2c. Applying Lemma 1 gives a telescoping
sum. 2

Lemma 3 For n ≥ 2,

bn
2
c∑

d=0

dLn(d) =





n

2

(
n− 1
n
2
− 1

)
− 2n−2 if n is even

n− 1

2

(
n− 1

bn
2
c − 1

)
+

1

2

(
n− 1

bn
2
c

)
− 2n−2 if n is odd.

Proof. First note that the summand is 0 when d = 0 or d = bn
2
c and then apply Lemma

1 to get

bn
2
c∑

d=0

dLn(d) =

bn
2
c−1∑

d=1

d

((
n− 1

d

)
−

(
n− 1

d− 1

))
(5)

=

bn
2
c−1∑

d=1

(
d

(
n− 1

d

)
− (d− 1)

(
n− 1

d− 1

))
−

bn
2
c−1∑

d=1

(
n− 1

d− 1

)
. (6)

The first sum telescopes, giving (bn
2
c − 1)

(
n−1
bn

2
c−1

)
. The second sum is the number of

elements in the first bn
2
c − 2 levels of the Boolean lattice Bn−1 which, when n is even, is:

1

2

(
2n−1 − 2

(
n− 1

bn
2
c − 1

))
,

and when n is odd:
1

2

(
2n−1 − 2

(
n− 1

bn
2
c − 1

)
−

(
n− 1

bn
2
c

))
.

2

Theorem 4 For all n ≥ 2, the number of faces in the plane graph P (Tn) after quadran-
gulating is 2n−1. Thus, there are 2n−1 vertices in its dual, which is a Venn diagram for n
sets.

Proof. The embedding of the chain cover graph has
(

n
bn/2c

)
faces. We show that the

number of such edges added in the quadrangulation phase is Fn = 2n−1− (
n

bn/2c
)
. By (4),

Fn =

bn
2
c∑

d=0

(n− 2d− 2)Ln(d) = (n− 2)

bn
2
c∑

d=0

Ln(d)− 2

bn
2
c∑

d=0

dLn(d). (7)

Using Lemmas 2 and 3, when n is even (7) becomes

(n− 2)

(
n− 1
n
2
− 1

)
+ 2n−1 − n

(
n− 1
n
2
− 1

)
= 2n−1 − 2

(
n− 1
n
2
− 1

)
= 2n−1 −

(
n
n
2

)
.
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When n is odd (7) becomes

(n−2)

(
n− 1

bn
2
c−1

)
+2n−1−(n−1)

(
n−1

bn
2
c−1

)
−

(
n− 1

bn
2
c

)
= 2n−1−

(
n−1

bn
2
c − 1

)
−

(
n−1

bn
2
c
)

= 2n−1−
(

n

bn
2
c
)

.

2

This number is one more than half the number of vertices in a simple diagram of order
n. Thus we propose to call these diagrams “half-simple”.

5 At Least Half-Simple Symmetric Diagrams

for Prime n

Recall that in Section 2, for prime n, the plane graph R(P (Sn)) was created from n
copies of P (Sn) and the dual of R(P (Sn)) was a symmetric Venn diagram with

(
n

bn/2c
)

vertices. By Theorem 3, we can quadrangulate every face corresponding to a node and
its first child in Sn in every copy of P (Sn) and the resulting quadrangulation of R(P (Sn))
is still a plane, monotone, symmetric, spanning subgraph of the n-cube; thus its dual is
still a symmetric Venn diagram. In this section we show that the total number of faces
in the quadrangulation of R(P (Sn)) is at least 2n−1(1 − o(1)) and therefore its dual is
asymptotically at least half-simple.

As an example for n = 11 (see Figure 10), the number of faces of P (S11) before
quadrangulating is

(
11
5

)
/11 = 42. The number of faces added by quadrangulating the

faces between the chains corresponding to a node in S11 and its first child is 69. Repeating
this in every copy of P (S11), the total number of faces in the resulting quadrangulation
of R(P (S11)) is 11(42+69)=1221. In addition, note that any circular permutation can
be used to label subsequent rotated copies of P (S11); if the circular permutation used is
(6 7 8 9 10 11 1 2 3 4 5), then 16 extra faces can be added to P (S11) by manually adding
extra edges wherever possible, giving another 11× 16 = 171 faces in the graph. Thus, the
dual is a symmetric Venn diagram with 1221+171 = 1392 vertices, whereas a simple Venn
diagram would have 2046 vertices. This diagram is rigid, i.e. as simple as possible, as no
more edges can be added to the dual graph and thus no more vertices can be separated
in the Venn diagram.

For contrast, in [6], Hamburger shows how to separate vertices in his 11-Venn diagram
from [7] to get symmetric 11-Venn diagrams with only up to 1001 vertices. Following his
example, we can say that since each of the 69 + 16 = 85 extra edges can either be present
or not in the rotated copies of P (S11), these extra edges give us 285 distinct symmetric
11-Venn diagrams, more than previously known.

It remains to count Fn, the number of faces added to P (Sn) by quadrangulating the
faces between the chains corresponding to a node in Sn and its first child. Then nFn is
the total number of faces added to R(P (Sn)).

Recall from Section 2 that x is a node in Sn if and only if
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(a) After quadrangulating all faces corresponding to a node in S11 and its first child.
�
�
�
�

�
�
�
�

(b) After manually adding extra edges, including wrapping edges.

Figure 10: Adding edges to the graph P (S11).

• (i) x has finite block code (so it starts with 1 and ends with 0),

• (ii) β(x) ≤ β(σi(x)) for any i, and

• (iii) x has exactly one unmatched 1.

We will make use of the following lemma:

Lemma 4 If x is a node in the chain cover tree and if the last block of x has the form
10k, then k ≥ 2.

Proof. First, k ≥ 1 as β(x) is finite. If k = 1, then β(x) = (. . . , 2). However as n = |x|
is prime there must be an element in β(x), call it j, such that j ≥ 3 and so we could
create a rotation of x with a lexicographically smaller block code by rotating two positions
right to create x′ with β(x′) = (2, . . .). This contradicts the fact that x has the (unique)
lexicographically lowest block code of all of its rotations. 2

Let `(x) denote the location of the last 1 in x.

Theorem 5 If u and v are children of w in the chain cover tree and `(u) < `(v), then v
is not a leaf.
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Proof. Since w satisfies (i), w can be written as

w = α1a0b,

where either α is empty or α has finite block code. Then u and v have the form

u = α1a0c10b−c−1; v = α1a0c′10b−c′−1,

where 0 ≤ c = `(u)− |α| − a− 1 and c < c′ = `(v)− |α| − a− 1. Let

z = α1a0c′110b−c′−2.

If we show that z satisfies (i)-(iii), then z is a child of v in the chain cover tree.
Applying Lemma 4 to v gives that b − c′ − 2 ≥ 2, so z ends in 0 and starts with 1,

satisfying (i). Also β(z) = β(v), so z satisfies (ii). Finally, since u is a node, it satisfies
(iii) and therefore the following string has exactly one unmatched 1, which, since c ≥ 1,
is not the last 1:

α1a0c1.

Then, since c′ > c, the string
α1a0c′1

has exactly one unmatched 1 and at least one unmatched 0, so the string

α1a0c′11

(and therefore also z) has exactly one unmatched 1. So z satisfies (iii). 2

Corollary 1 Each node in the chain cover tree has at most one leaf child.

We make the following definitions.

• Let N(d) denote the number of nodes of weight d in Sn. Then N(1) = 1 and for
d > 1,

N(d) =
1

n

[(
n

d

)
−

(
n

d− 1

)]
, (8)

• Let L(d) denote the number of leaves of weight d in Sn.

• Let L(d) denote the number of nonleaves of weight d in Sn.

• Let w(d) denote the number of faces added to P (Sn) by quadrangulating the region
between the chains corresponding to a node x of weight d its first child w in Sn.
¿From Theorem 2 we know that

w(d) = |Cw| = |Cx| − 2 = n− 2d− 2 for 1 ≤ d ≤ (n− 3)/2. (9)
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Then Fn, the number of faces added to P (Sn), can be expressed as

Fn =

(n−3)/2∑

d=1

w(d)L(d).

We can get a lower bound on Fn by observing first that every node at level d contributes
either w(d − 1) toward quadrangulating a region with its parent (if it is a leaf) or w(d)
toward quadrangulating a region with its first child (if it is a nonleaf) or both. By
Corollary 1, leaves can be mapped one-to-one to parents. Thus if we count all of the
contributions at every node at every level, we are at worst double-counting, giving the
second inequality below. The first inequality follows since w(d) ≤ w(d − 1) and N(d) =
L(d) + L(d).

(n−3)/2∑

d=1

w(d)N(d) ≤
(n−3)/2∑

d=1

(w(d− 1)L(d) + w(d)L(d) ≤ 2

(n−3)/2∑

d=1

L(d)w(d).

Thus, the number of faces added to R(P (Sn)) by quadrangulating is

nFn ≥ n

2

(n−3)/2∑

d=1

w(d)N(d). (10)

Theorem 6 For n prime, the number of faces added to R(P (Sn)) by quadrangulating is

nFn ≥ 2n−1 − 1− 1

2

[(
n + 1

(n + 1)/2

)
+

(
n

(n− 3)/2

)]
, (11)

making its dual a symmetric Venn diagram with 2n−1(1− o(1)) vertices.

Proof. We need to show that (11) is a lower bound for (10).
We will make use of the following identity, established in the proof of Theorem 4, with

the observation that in (7), L(bn
2
c) = 0.

bn
2
c−1∑

d=0

(n− 2d− 2)

[(
n− 1

d

)
−

(
n− 1

d− 1

)]
= 2n−1 −

(
n

bn/2c
)

. (12)

If we replace n by n + 1 and observe that the summand on the left is n − 1 when d = 0
then for odd n, we get

(n+1)/2−1∑

d=1

(n− 2d− 1)

[(
n

d

)
−

(
n

d− 1

)]
= 2n −

(
n + 1

(n + 1)/2

)
− (n− 1). (13)
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Starting from (10) and using (8) and (9),

n

2

(n−3)/2∑

d=1

w(d)N(d) =
n

2


(n−4) +

(n−3)/2∑

d=2

(n−2d−2)
1

n

[(
n

d

)
−

(
n

d−1

)]


=
1

2


n(n−4)−(n−1)(n−4) +

(n−3)/2∑

d=1

(n−2d−2)

[(
n

d

)
−

(
n

d−1

)]


=
1

2


n−4+

(n−3)/2∑

d=1

(n−2d−1)

[(
n

d

)
−

(
n

d−1

)]

−
(n−3)/2∑

d=1

[(
n

d

)
−

(
n

d−1

)]


=
1

2


n−4+

(n−3)/2∑

d=1

(n−2d−1)

[(
n

d

)
−

(
n

d−1

)]
−

(
n

(n−3)/2

)
+1


 .

We now make use of (13) to evaluate the sum in the last line above, noting that the last
term in the sum on the left of (13) is 0:

n

2

(n−3)/2∑

d=1

w(d)N(d) =
1

2

(
n− 4 + 2n −

(
n + 1

(n + 1)/2

)
− (n− 1)−

(
n

(n− 3)/2

)
+ 1

)

= 2n−1 − 1− 1

2

((
n + 1

(n + 1)/2

)
+

(
n

(n− 3)/2

))
.

This lower bound asymptotically approaches 2n−1 as n increases. 2

In fact, the number of faces resulting from the quadrangulations appears to be con-
siderably larger than the lower bound given by the theorem, but we have been unable to
find a tighter counting argument which would establish this. The table below shows a
comparison of the number of vertices in a simple Venn diagram, the number of vertices in
the symmetric Venn diagrams produced by the GKS construction, the number of vertices
in the symmetric Venn diagrams produced by the construction of this paper (KRSW), and
the ratio of the number of vertices produced by the KRSW construction to the number
in a simple Venn diagram.
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n simple [GKS] [KRSW] [KRSW]
simple

3 6 3 3 .5000
5 30 10 15 .5000
7 126 35 70 .5556

11 2,046 462 1,221 .5968
13 8,190 1,716 5,005 .6111
17 131,070 24,310 81,787 .6240
19 524,286 92,378 329,289 .6281
23 8,388,606 1,352,078 5,308,423 .6328

6 Concluding Remarks

We have succeeding in showing that for prime n there are symmetric Venn diagrams that
are nearly simple, in the sense that the average number of curves passing through a point
of intersection is at most a constant c, independent of n. Although we have established this
for (asymptotically) c = 4, the same construction with an improved counting argument
could likely lower the constant c. The question remains as to whether there are simple
symmetric Venn diagrams for n prime and greater than 7; even the the n = 11 case
remains open.

It would also be interesting to prove an upper bound on the number of symmetric
Venn diagrams.
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