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Abstract

The eccentricity e(u) of vertex u is the maximum distance of u
to any other vertex of G. A vertex v is an eccentric vertex of vertex
u if the distance from u to v is equal to e(u). The eccentric digraph
ED(G) of a digraph G is the digraph that has the same vertex set
as G and the arc set defined by: there is an arc from u to v if and
only if v is an eccentric vertex of u. In this paper we consider the
behaviour of an iterated sequence of eccentric graphs or digraphs
of a graph or a digraph. The paper concludes with several open
problems.

Keywords: Eccentricity, eccentric vertex, distance, eccentric graph, eccen-
tric digraph.
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1 Introduction and definitions

The study of distance properties of graphs is a classic area of graph theory;
see, for example, the books of Buckley and Harary [5] and Brouwer, Cohen,
Neumaier [3]. We study here an iterated version of a distance dependent
mapping introduced by Buckley [4] and refined by others, including Boland
and Miller [1]. The mapping is very simple but leads naturally to rather
subtle questions. The questions posed are of the type studied by extremal
graph theorists, but even they may consider our problems rather extreme!

A directed graph G = G(V,E) consists of a vertex set V (G) and an
arc set E(G). For the purposes of this paper, a graph is a digraph for
which (u, v) ∈ E implies (v, u) ∈ E. The least number of arcs in a directed
path from u to v is the distance from u to v, denoted d(u, v). If there is no
directed path from u to v in G then we define d(u, v) = ∞. The eccentricity,
e(u), of u is the maximum distance from u to any other vertex in G. The
radius is the minimum eccentricity of the vertices in G; the diameter is the
maximum eccentricity of the vertices in G. Vertex v is an eccentric vertex
of u if d(u, v) = e(u). Note that if a vertex has out-degree zero, that vertex
has all the other vertices of the given digraph as its eccentric vertices.

The eccentric digraph of a digraph G, denoted ED(G), is the digraph
on the same vertex set as G, but with an arc from vertex u to vertex v in
ED(G) if and only if v is an eccentric vertex of u. The eccentric digraph of
a graph was introduced by Buckley [4] and Boland and Miller [1] introduced
the concept of the eccentric digraph of a digraph. An example of a graph
and its eccentric digraph is given in Figure 1. Note that arcs of graphs are
drawn not as a pair of directed edges with arrows, but in the usual form.
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Figure 1: A graph and its eccentric digraph.

Given a positive integer k ≥ 2, the kth iterated eccentric digraph of G
is written as EDk(G) = ED(EDk−1(G)) where ED0(G) = G. Figure 2
illustrates these definitions showing digraph G and its iterated eccentric
digraphs ED(G), ED2(G), ED3(G), and ED4(G). Note that in this case
ED5(G) = ED3(G).
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Figure 2: An eccentric digraph iteration sequence.
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An interesting line of investigation concerns the iterated sequence of
eccentric digraphs. n For every digraph G there exist smallest integer
numbers p > 0 and t ≥ 0 such that EDt(G) = EDp+t(G). For example, in
Figure 2, t(G) = 3 and p(G) = 2. We call p the period of G and t the tail
of G; these quantities are denoted p(G) and t(G) respectively. We say that
a graph is periodic if it has no tail; i.e., if t(G) = 0. In the definitions just
given, we assumed that the vertices of the graphs are labelled. It is also
natural to consider the corresponding unlabelled version.

For every digraph G there exist smallest integer numbers p > 0 and
t ≥ 0 such that EDt(G) ∼= EDp+t(G), where ∼= denotes graph isomorphism.
We call p the iso-period of G and t the iso-tail of G; these quantities are
denoted p′(G) and t′(G) respectively. We say that a graph is iso-periodic
if it has no iso-tail; i.e., if t′(G) = 0. Clearly p′(G) | p(G).

2 Previous results and conjectures

The following observations, theorems, and open problems first appeared in
[1] or [2].

Observation 2.1 If a digraph G is the union of k > 1 vertex disjoint
strongly connected digraphs of orders n1, n2, . . . , nk, for m > 0,

EDm(G) =

{
Kn1,n2,...,nk

if m odd
Kn1 ∪Kn2 ∪ . . . ∪Knk

if m even.

Observation 2.2 The eccentric digraph of a directed cycle is a directed
cycle, ED(

−→
C n) ∼= −→

C n. However, note that the direction of the arcs in

ED(
−→
C n) is opposite to the direction of the arcs in the given cycle

−→
C n.

Observation 2.3 A nontrivial eccentric digraph has no vertex of out-
degree zero. However, the converse is not true: there exist digraphs with
the out-degree of every vertex non-zero which are, nevertheless, not the
eccentric digraphs of any graph or digraph. An example of such a digraph
is the graph P4, the path of four vertices.

It seems likely that a classification of all digraphs as to whether or not
they are an eccentric digraph is not a trivial problem.

Question 2.1 Find necessary and sufficient conditions for a digraph to be
an eccentric digraph.

The fact that there exist digraphs which are not eccentric digraphs
of any graph or digraph leads to the question: “If a digraph G is not an
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eccentric digraph, can G be always embedded in an eccentric digraph?” This
question was considered in [2]. The eccentric digraph appendage number of
G is the minimum number of vertices that must be added to a digraph G
so that there exists a digraph G

′
which is the eccentric digraph of some

digraph and G is an induced subgraph of G
′
.

Theorem 2.1 If G is not the eccentric digraph of some graph H, then the
eccentric digraph appendage number of G equals one.

Question 2.2 Find the period and the tail of various classes of graphs and
digraphs.

Observation 2.4 The only digraph G with p(G) = 1 and t(G) = 0 is the
complete digraph Kn.

Observation 2.5 For p = 2, t = 0 examples include the complete multi-
partite digraph Kn1,n2,...,nk

, the disjoint union of complete digraphs Kn1 ∪
Kn2 ∪ . . . ∪Knk

and the directed cycle
−→
C n.

Question 2.3 Characterize periodic digraphs with period two.

Observation 2.6 For p = 2, t = 1 examples include the (disjoint) union
of strongly connected digraphs Hn1 ∪Hn2 ∪ . . .∪Hnk

, where at least one of
them is not a complete digraph.

3 Examples, open problems, and conjectures

In this section we present some examples and new open problems and
questions, all designed to stimulate further interest in the iterated eccentric
mapping. Many examples of digraphs G with p(G) = 2 have been found.
In fact, if you pick a digraph at random on a computer then it usually
occurs that p(G) = 2 and you have to work quite hard to find one of larger
period. This observation leads to our first conjecture.

Conjecture 3.1 In the standard model of n-vertex random digraphs where
arcs are chosen at random with probability q, if 0 < q < 1, then

lim
n→∞Probq(p(G) = 2) = 1.

Here we present for the first time examples of eccentric digraph iteration
cycles of length more than 2. The following three examples give eccentric
digraph iteration cycles of lengths 4 and 8.

5



Figure 3: The Cayley graph with generators (01)(23)(4567) and (56)(78).

Example 3.1 Let R be the (undirected) cubic Cayley graph with the two
generators (01)(23)(4567) and (56)(78). The directed version is shown in
Figure 3. The graph R has 20 vertices and is periodic with p(R) = 4.
However, the graphs EDk(R) are all isomorphic to R and so p′(R) = 1.

Example 3.2 Let R be as in Example 1. The conjunction (or tensor
product) G = G1∧G2 of two digraphs G1 = (V1, E1) and G2 = (V2, E2) has
V = V1× V2 as its vertex set, and u = (u1, u2) is adjacent to v = (v1, v2) in
G iff (u1, v1) ∈ E1 and (u2, v2) ∈ E2. For this graph, p(R ∧R) = 8.

Example 3.3 The smallest digraph G found so far with p′(G) > 2 has 10
vertices and iso-period 4. Such a digraph G is shown in Figure 4.

Example 3.4 Let Cn denote the cyclic graph of n vertices. Consider the
odd cycles, C2m+1. Figure 5 illustrates that p(C9) = 3. Below we show a
table of p(C2m+1). This is sequence A003558 in Sloane’s Encyclopedia of
Integer Sequences.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p(C2m+1) 1 2 3 3 5 6 4 4 9 6 11 10 9 14 5 5

It is not difficult to determine that

p(C2m+1) = min{k ≥ 1 | m(m + 1)k−1 = ±1 (mod 2m + 1)}.

In particular, if m = 2k, then p(C2m+1) = k + 1, showing that the period
may take on any value. The numbers m for which m = p(C2m+1) have been
called the “Queneau numbers” (e.g. Sloane’s A054639). Note that if m is
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Figure 4: A digraph G with of order 10 such that p(G) = p′(G) = 4 and
t(G) = t′(G) = 1.
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Figure 5: The graph C9 and its iterated eccentric digraphs.
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a Queneau number, then the sequence of iterated eccentric digraphs gives
a Hamilton decomposition of K2m+1. They also show that the following
conjectured bound, if true, is tight for infinitely many values of n.

Conjecture 3.2 For any digraph G of n vertices

p(G) ≤ n− 1

2
.

Conjecture 3.3 We have observed, but not proven, that

p(C2m+1 × C2m+1) = p(C2m+1) + p(C2m+1),

where × denotes the usual Cartesian product of graphs.

Example 3.5 The 336 vertex cubic Cayley graph with the two generators
(23)(45)(67) and (025)(146) leads to a period 4 sequence G0, G1, G2, G4,
where G0

∼= G2 is an 8-regular graph, and G1
∼= G3 is 14-regular graph.

Thus, for this example, p(G) = 4 and p′(G) = 2.

Observation 3.1 A digraph G of order n satisfies that p(G) = t(G) = 1
if and only if G has k ≥ 1 vertices with out-degree 0 and n − k vertices
with out-degree n− 1.

Observation 3.2 Vertex transitive graphs are sometimes said to be sym-
metric. Clearly, the eccentric digraph of a symmetric digraph is a sym-
metric digraph. A little thought reveals that the symmetric digraph of a
symmetric graph is a symmetric graph. Similarly, the eccentric digraph of
a Cayley (di)graph also a Cayley (di)graph. The generators of ED(G) are
the products of the generators along the longest paths in G.

Clearly ED induces a partition of the set of all graph (and on the set
of all unlabelled graphs). Let 〈G〉 denote the equivalence class of (labelled)
graphs induced by ED; and let [G] represent the corresponding unlabelled
equivalence class.

What are the properties of that partition? In Figure 6 we show the
partitions of labelled graphs (on the left) and unlabelled graphs (on the
right) induced by ED for n = 3. Note that there are 2n(n−1) = 64 graphs
represented on the left and 16 on the right.

Question 3.1 Among all digraphs G on n vertices, what is the minimum
size of 〈G〉? The maximum size? The average size? What about [G]?

Question 3.2 Let us say that a class is periodic if every graph in the class
is periodic. For general n, identify some periodic classes. Can the periodic
classes be characterized?
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Figure 6: The equivalence classes induced by ED on the sets of unlabelled
and labelled graphs for n = 3. The number enclosed in semi-circles are the
number of classes of that form.
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Question 3.3 Which unlabelled graphs are fixed points; i.e., such that
ED(G) = G? For example, for n = 3 there are five such graphs. As
observed earlier, for labelled graphs, only the complete graph is a fixed
point.

Question 3.4 For every digraph G, is it true that t(G) = t′(G)?
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