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Abstract

Consider combinations of k out of n items as represented by bitstrings of length
n with exactly k ones. An algorithm for generating all such combinations so that
successive bitstrings differ by the interchange of a single 01 or 10 pair exists only if n is
even and k is odd (except for the trivial cases where k = n,n− 1,0,1). This was shown
by Eades, Hickey, and Read [4] (and others) but no explicit algorithm was given. Later
Carkeet and Eades [3] gave an inefficient, exponential storage implementation. Here
we present an implementation of the algorithm of [4] that is constant average time,
and uses linear storage.

1 Introduction

Let C(n, k) denote the set of bitstrings of length n with exactly k ones, and C(n, k) be the
number of elements in C(n, k). We are interested in generating, or listing, the elements of
C(n, k) so that successively listed bitstrings differ by the interchange of a single 01 or 10
pair. Let G(n, k) denote the graph whose vertex set is C(n, k) and where an edge connects
two bitstrings if they differ by a single adjacent interchange. Our problem thus becomes
one of finding a Hamilton path in G(n, k). This graph has two pendant vertices, 1k0n−k and
0n−k1k, and so the Hamilton path must begin and end at those two vertices.
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Three groups, working independently, have shown that G(n, k) has a Hamilton path if and
only if n is even and k is odd (except for the trivial cases k = n,n−1,0,1). See Eades, Hickey,
and Read [4], Buck and Wiedemann [2], and Ruskey [5]. In each of the papers the proof
proceeds by decomposing the graph, but a different decomposition is used in each paper.
The only paper to contain an explicit algorithm is that of [5] 1, where a constant average
time, linear storage algorithm is given. Carkeet and Eades [3] gave an implementation of the
proof of [4], but the algorithm is inefficient and uses exponential storage.

We will show that the algorithm implicit in the proof of [4] can be implemented to use linear
storage and take constant average time. This is listed as an open problem in [4]. There
is nothing extraordinary about the methods that we use. They could be applied to any
similar proof. In comparison with the algorithm of [5], the algorithm of this paper is shorter,
and probably more efficient, but is perhaps not as conceptually simple. The algorithm,
implemented in Pascal, can be obtained from the second author.

The representation of combinations used in [4] was not the bitstring itself, but rather the
sequence of positions that the 1’s occupy. By using the bitstrings the presentation of the
proof is somewhat simplified.

2 Implementation

In order to explain our implementation it is necessary to review the proof presented in [4].
The proof can be viewed as being based on the recurrence relation given below. It proceeds
by induction on n and k.

(
n
k

)
=

(
n− 2
k − 2

)
+ 2

(
n− 2
k − 1

)
+

(
n− 2

k

)

First, all C(n− 2, k− 2) bitstrings with prefix 11 are generated, followed by those beginning
01 or 10 (of which there are 2C(n − 2, k − 1)), followed by the C(n − 2, k) with prefix 00.
The list starts with the bitstring 1k0n−k and ends with the bitstring 0n−k1k. Inductively,
those beginning 11 or 00 can be generated. Those beginning 11 are listed from 111k−20n−k

to 110n−k1k−2, and those beginning 00 are listed from 001k0n−k−2 to 000n−k−21k. The com-
plicated part of the proof is in listing those bitstrings that begin 01 or 10. A special kind of
tree that is used in this part of the proof is defined below.

Definition: 1 A comb is a tree of maximum degree three where all vertices of degree three
lie along a single path which is called the spine. The paths that are attached to the spine
are called teeth.

1The authors have recently learned that Buck and Wiedemann’s original report [1] contained two efficient
implementations of their combination generator. However, the algorithms are presented in a little-known
language, IDAL, and are not analyzed in the report.
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Let us consider the specific case of n = 8 and k = 5. There are C(n − 4, k − 2) = C(4, 3)
= 4 bitstrings with prefix 1010, and similarly there are 4 with prefix 1001, or 0110, or 0101.
Inductively, the four suffixes are 1110, 1101, 1011, and 0111. The proof of [4] denotes the list
of bitstrings of m = C(n−4, k−2) prepended with 10 by p1, p2, . . . , pm, and when prepended
with 01 by q1, q2, . . . , qm. In our example, the p list is 101110, 101101, 101011, 100111, and
the q list is 011110, 011101, 011011, 010111. Note that

q1, p1, p2, q2, q3, . . . , pm−1, pm, qm

is a path in G(n−2, k−1). This path is the spine of the comb. The bitstrings of C(n−2, k−1)
that begin 00 or 11 are attached as the teeth of the comb; those that begin 00 are attached
to q vertices, and those that begin 11 are attached to p vertices. The tooth attached to
a q vertex is obtained by moving its leftmost 1 to the right until it encounters another 1.
The tooth attached to a p vertex is obtained by moving the leftmost 0 to the right until it
encounters another 0. The following table lists the vertices of the spine for our example as
the leftmost column, and the bitstrings to the right are the teeth of the comb.

q1 011110
p1 101110 110110 111010 111100
p2 101101 110101 111001
q2 011101
q3 011011
p3 101011 110011
p4 100111
q4 010111 001111

There are two combs for C(n, k) depending on whether the bitstring starts 01 or 10. In
other words, we have the product graph of the comb and an edge. Let us call the comb with
prefix 10 the upper comb and the one with prefix 01 the lower comb. It is a simple matter to
find a Hamilton path in the two combs that starts at the upper vertex 10pm and ends at the
lower vertex 01q1. Since pm = 10n−k−11k−1 and q1 = 01k−10n−k−2 the proof will be finished.
The Hamilton path in the pair of combs for our example is illustrated in Figure 1.

When viewed along the spines the path sequence starts 10pm, 10qm, 01qm, 01pm. Thereafter,
the patterns 01pi, 10pi, 10qi, 01qi, and 01qi, 01pi, 10pi, 10qi alternate as i decreases from
m − 1 to 1. Of course, the teeth have to be generated along the way as well. This finishes
the proof.

In order to implement the algorithm efficiently we cannot store sublists of bitstrings as was
done in [3]. Our approach is to try to write a procedure Next that will transform the current
bitstring into its successor, and only use a linear (e.g. O(n)) amount of auxiliary information.

From any vertex in the pair of combs there are at most three possible moves: across the
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Figure 1: Path in pair of combs for n = 8 and k = 5.

comb, along the spine, or along a tooth. It is also convenient to keep track of whether we
are at a p vertex or a q vertex. This leads us to the following list of 14 states.

INIT The bitstrings beginning 11.
FINI The bitstrings beginning 00.
PP From a p vertex to a p vertex in same comb.
QQ From a q vertex to a q vertex in same comb.
PQ From a p vertex to a q vertex.
QP From a q vertex to a p vertex.
ULP From a p vertex in upper comb to a p vertex in lower comb.
LUP From a p vertex in lower comb to a p vertex in upper comb.
ULQ From a q vertex in upper comb to a q vertex in lower comb.
LUQ From a q vertex in lower comb to a q vertex in upper comb.
TDP Down a p tooth.
TDQ Down a q tooth.
TUP Up a p tooth.
TUQ Up a q tooth.

Procedure Next is used recursively. In particular, when the INIT FINI, PP, and QQ moves
are made, Next is called again to find the successor of some smaller bitstring. Procedure
Next will have four paramenters n, k, level, and dir. Parameter level is the current level
of the recursion, and dir is the direction in which the generation is proceeding. The forward
direction is from 1k0n−k to 0n−k1k and the backward direction is the opposite. We need to
be able to go in both directions because the spine is recursively traversed in the opposite
direction. The basic outline of the algorithm is given below. The bitstring itself is stored in
a global array x. When moving a single bit, the forward direction means movement to the
left, and backwards means movement to the right.
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"Initialize";
repeat Next( n, k, 1, forw );
until "x is last sequence";

procedure Next ( n, k, level, dir : integer );
begin

if k = 1 then "move 1 one position in direction +dir" else
if k = n-1 then "move 0 one position in direction -dir" else
case "next move" of
INIT: begin ... end;
...
TUQ: begin ... end;

end {case};
end {of Next};

The case statement contains each of the 14 states and, aside from recursive calls, we want
there to be a constant amout of computation for any call to Next. The main complication is
how to keep track of where we are in the recursive construction. This is not straightforward
because the recursive steps along the spine are intermixed with non-recursive steps along the
spine and up and down the teeth. This complication is overcome by introducing a global
stack of records with the appropriate fields. The stack is indexed by the level of the recursion.

We have now presented the central ideas of our algorithm. The exact fields in the stack will
depend on what other global information is maintained. One specific implementation will
be described next. In addition to x and the stack there is another global array p1 which
keeps track of the positions of the 1’s in the bitstring. The adjacent interchanges are done
by moving a specific 1 to the right or to the left.

Each stack record contains four fields spec, side, p, and nm. Field spec is a boolean that
keeps track of whether we are currently in the special part of the path which is traversing
the part of the graph defined by 10pm, 10qm, 01qm, 01pm. Field side keeps track of whether
we are on the upper or lower comb. Field p is a counter used to keep track of which 1 is
being moved when traversing a tooth. Field nm keeps track of which is the next move.

With the data structure described above, it is now possible to write Next so that a constant
amount of computation is done, except for the recursive calls. Thus the running time of the
algorithm is proportional to the total number of calls to Next that are made in generating
all elements of C(n, k).

Let N(n, k) denote the number of calls to Next(n,k) in generating C(n, k). As will be shown
in the following section N(n, k)/C(n, k) is proportional to n and so we do not yet have a
constant average time algorithm. Upon examining the algorithm it seems that many of the
calls to Next are wasted if we already know that the prefix is 11 or 00. By being a little more
intelligent about how those cases are handled we obtain a constant average time algorithm.
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The procedure Gen below (recursively) avoids the calls to Next when the prefix is 11 or 00.

procedure Gen ( n, k : integer );
begin

if k = 1 then "sweep the 1 from right to left" else
if k = n-1 then "sweep the 0 from left to right" else
begin

"set first two bits to be 1";
Gen( n-2, k-2 );
"Initialize";
repeat Next( n, k, 1, forw );
until "all bitstrings with prefix 01 or 10 are generated";
"set first two bits to be 0";
Gen( n-2, k );

end;
end {of Gen};

As shown in the next section, by using Gen, we obtain a constant average time algorithm.

3 Analysis

Recall that N(n, k) is the number of calls to Next(n,k) in generating C(n, k). The following
recurrence relation holds: N(n, 1) = N(n, n− 1) = n− 1 and otherwise

N(n, k) =

(
n
k

)
− 1 + N(n− 2, k − 2) + N(n− 4, k − 2) + N(n− 2, k)

To prove the recurrence relation observe that Next is called once for everybitstring except
the first, and the other terms in the recurrence follow from the recursive calls.

Let M(n, k) be the number of calls to Next(n,k) in the modified algorithm (when Gen is
used). The following recurrence relation holds: M(n, 1) = M(n, n− 1) = 0 and otherwise

M(n, k) = 2

(
n− 2
k − 1

)
− 1 + M(n− 2, k − 2) + N(n− 4, k − 2) + M(n− 2, k)

The following Theorem shows that M(n, k)/C(n, k) is indeed bounded by a constant.

Theorem: 1

M(n, k) <
3

2

(
n
k

)
and N(n, k) <

(
n + 2
k + 1

)
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Proof: An easy induction using the recurrence relations for N and M .

It would be interesting to determine M and N more exactly. From the recurrences, for fixed
k, we see that N(n, k) is a polynomial in n of degree k + 1, and M(n, k) is a polynomial in
n of degree k. For k = 3 we have N(n, 3) = (n− 2)(n3 + 2n2 + 24n− 120)/48 and M(n, 3)
= (n− 4)(n− 2)(n + 3)/6. For fixed odd k > 3, numerical evidence indicates that

N(n, k)

C(n, k)
∼ n

2(k + 1)
and

M(n, k)

C(n, k)
∼ 5

4

These limits are known to be true for k = 5,7. If k > 5 then the limits are approached from
above, not below.
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4 Appendix

This appendix contains a Pascal implementation of the algorithm described in the paper
above. It is not intended to appear in publication. To simplify the indexing, the bitstrings
are indexed from n to 1 (so that the leftmost two bits as described in the paper correspond
to x[n] and x[n-1]).

program EHR ( input, output );

const
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MAX = 100;

left = +1; forw = +1;
riht = -1; back = -1;

type

Moves = (TUP,TUQ,TDP,TDQ,PQ,QP,PP,QQ,
ULP,ULQ,LUP,LUQ,INIT,FINI);

StackElement = record
spec : boolean;
side : (lower,upper);
p : integer;
nm : Moves; {The next move}

end;

var

n,k : integer;
Count : integer;
x : array [1..MAX] of 0..1; {The bitstring}
p1 : array [1..MAX] of integer;
stk : array [1..MAX] of StackElement;

procedure WriteCombination;
var i : integer;
begin
Count := Count + 1;
write( Count:5,’:’ );
for i := n downto 1 do write( x[i]:2 );
writeln;

end {of WriteCombination};

procedure Move ( n, dir : integer );
begin
Count := Count + 1;
x[p1[n]] := 0;
p1[n] := p1[n] + dir;
x[p1[n]] := 1;

end {of Move1};
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procedure Init ( dir, level : integer );
begin
with stk[level] do begin

if dir = forw then begin
nm := INIT; spec := true; side := upper;

end else {dir = back} begin
nm := FINI; spec := false; side := lower;

end;
p := 1;

end {with};
end {of Init};

procedure Next ( n, k, level, dir : integer );
begin

with stk[level] do begin
if k = 1 then begin

Move( 1, -dir );
end else
if k = n-1 then begin

if dir = forw then if p1[1] = 2 then p := 1;
if dir = back then if p1[k] = k then p := k;
Move( p, -dir ); p := p + dir;

end else
case nm of
INIT:

if dir = forw then begin
if p1[k-2] = k-2 then begin

Move( k-1, riht );
spec := true; side := upper; nm := PQ;

end else begin
if p1[1] = n-k+1 then Init( forw, level+1 );
Next( n-2, k-2, level+1, forw );

end;
end else {dir = back} begin
Next( n-2, k-2, level+1, back );

end;
FINI:

if dir = forw then begin
Next( n-2, k, level+1, forw );

end else {dir = back} begin
if p1[1] = n-k-1 then begin

Move( k, left );
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nm := LUQ; spec := false; side := lower;
end else begin

if p1[k] = k then Init( back, level+1 );
Next( n-2, k, level+1, back );

end;
end;

PP: begin
Next( n-4, k-2, level+1, -dir );
if (dir = back) and (p1[k-2] = k-2) then begin

nm := PQ; spec := true;
end else
if x[n-4] = 0 then nm := LUP
else begin nm := TDP; p := k-2; end;

end;
QQ: if dir = forw then begin

if p1[1] = n-k-1 then begin
Move( k, riht ); nm := FINI;
stk[level+1].p := 1;

end else begin
Next( n-4, k-2, level+1, back );
if x[n-4] = 1 then nm := LUQ else nm := TDQ;

end;
end else {dir = back} begin
Next( n-4, k-2, level+1, forw );
if x[n-4] = 1 then nm := LUQ else nm := TDQ;

end;
PQ: begin

Move( k-1, riht );
if x[n-4] = 1 then nm := ULQ else nm := TDQ;

end;
QP: begin

Move( k-1, left );
if (dir = forw) and spec then begin

nm := PP; spec := false;
end else

if x[n-4] = 1 then begin nm := TDP; p := k-2; end
else nm := ULP;

end;
ULQ: begin

Move( k, riht );
if x[n-3] = 0 then nm := TUQ else
if spec then nm := QP else nm := QQ;
side := lower;

end;
LUQ: begin
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Move( k, left );
if x[n-3] = 0 then nm := TUQ else nm := QP;
side := upper;

end;
ULP: if (dir = back) and spec then begin

Move( k-1, left );
nm := INIT;

end else begin
Move( k, riht );
if x[n-3] = 1 then nm := TUP else nm := PP;
side := lower;

end;
LUP: begin

Move( k, left );
if x[n-3] = 1 then nm := TUP else nm := PQ;
side := upper;

end;
TUQ: begin

Move( k-1, left );
if x[n-3] = 1 then

if spec then nm := QP else
if side = upper then nm := QP else nm := QQ;

end;
TDQ: begin

Move( k-1, riht );
if p1[k-1] = p1[k-2] + 1 then
if side = upper then nm := ULQ else nm := LUQ;

end;
TUP: begin

Move( p, riht );
if p = k-2 then begin

if side = upper then nm := PQ else nm := PP;
end else p := p + 1;

end;
TDP: begin

Move( p, left );
if x[p1[p]-2] = 0 then begin

if side = upper then nm := ULP else nm := LUP;
end else p := p - 1;

end;
end {case};

end {with};
end {of Next};
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procedure Initialize;
var i : integer;
begin
for i := 1 to n-k do x[i] := 0;
for i := 1 to k do begin

x[n-k+i] := 1; p1[i] := n-k+i;
end;
Count := 0;

end {of Initialize};

procedure G ( n, k : integer );
var i : integer;
begin
if k = 1 then begin

for i := 1 to n-1 do Move( 1, riht );
end else
if k = n-1 then begin

for i := 1 to n-1 do Move( i, riht );
end else begin

G( n-2, k-2 );
Move( k-1, riht );
with stk[1] do begin

spec := true; side := upper; nm := PQ;
end;
Init( back, 2 );
repeat Next( n, k, 1, forw );
until (p1[k] = n-1) and (p1[1] = n-k-1) and (p1[k-1] = n-3);
Move( k, riht );
G( n-2, k );

end;
end {of G};

begin
write( ’Enter n and k: ’ ); readln( n, k );
Initialize;
G( n, k );
WriteCombination;

end.
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