
E�cient Type Inclusion Tests

Jan Vitek R. Nigel Horspool Andreas Krall
Object Systems Group, CUI,

Universit�e de Gen�eve,
Geneva, Switzerland

Jan.Vitek@cui.unige.ch

Dept. of Computer Science,
University of Victoria,
Victoria, BC, Canada
nigelh@csr.uvic.ca

Institut f�ur Computersprachen,
Technische Universit�at Wien,

Wien, Austria
andi@complang.tuwien.ac.at

Abstract

A type inclusion test determines whether one type is
a subtype of another. E�cient type testing techniques
exist for single subtyping, but not for languages with
multiple subtyping. To date, the only fast constant-
time technique relies on a binary matrix encoding of
the subtype relation with quadratic space requirements.
In this paper, we present three new encodings of the
subtype relation, the packed encoding, the bit-packed

encoding and the compact encoding. These encodings
have di�erent characteristics. The bit-packed encoding
delivers the best compression rates: on average 85%
for real life programs. The packed encoding performs
type inclusion tests in only 4 machine instructions. We
present a fast algorithm for computing these encoding
which runs in less than 13 milliseconds for PE and BPE,
and 23 milliseconds for CE on an Alpha processor. Fi-
nally, we compare our results with other constant-time
type inclusion tests on a suite of 11 large benchmark
hierarchies.

1 Introduction

Manymodern programming languages, particularly obj-
ect-oriented ones, have been built around the notion of
type conformance to allow for a form of polymorphism
and code reuse. The idea is that, if a type A conforms
to a type B, then A can be used in any context where
B is expected. This notion is essential for the code in-
heritance advocated by most object-oriented languages.
Conformance is usually summarized by a transitive, re-

exive, anti-symmetric subtype relation (<:) between
the types of a hierarchy.

A type inclusion test determines if a pair of types is
in the subtyping relation. Such tests are performed fre-
quently during compilation. Most object-oriented lan-
guage implementations are also able to perform tests at

runtime. In Smalltalk the isKindOf: method tests
whether an object's class is a subclass of the class given
as argument, Oberon provides type tests and type
guards, Java instanceof, etc. Type tests need not al-
ways be explicitly requested by the programmer, they
may also be inserted by the compiler, either as an opti-
mization ([14]) or for safety. For example, in the Java
code fragment shown below, the assignment to the local
variable b is checked to ensure that the actual, runtime,
type of the argument to the method is e�ectively a sub-
type of B:

class B extends A {

void foo(A a) {

B b = (B) a ;

}

}

Since the subtype relation is a partial order on the types
of the program, type inclusion testing is more than the
mere comparison of type tags. Depending on the im-
plementation of the type test algorithm and on the dy-
namic frequency of tests, the cost of dynamic typecheck-
ing can strain the overall system performance.

This paper discusses the implementation of type in-
clusion tests in languages that allow multiple subtyp-
ing1. We present and compare di�erent encodings of
the subtype relation, as well as algorithms to compute
these encodings and perform the type inclusion test.
Our exploration of the design space of algorithms and
encodings was driven by three requirements:

1. Runtime e�ciency: Type tests should be fast. Our
original motivation for this research was to opti-
mize method dispatch ([15], [14]). To this end,
the cost of testing for type inclusion had to be
comparable to the cost of dispatch in statically
typed languages (5 machine instructions, but see
[8]). We also insist on constant-time tests2 as we
believe that the cost of language primitives should
be predictable.

1Note that we make a di�erence between subtyping and inheri-
tance. Java is a single inheritance language with multiple subtyping.

2In this context, constant means constant number of instructions,
we did not explore cache behavior.

2. Space e�ciency: The runtime data structures that
encode the subtype relation must be small. Fur-
thermore, the code sequence emitted by the com-
piler for each static occurrence of a subtype test
must be short.

3. Incremental hierarchy modi�cations: Support for
runtime updates of the subtype relation. The con-
cern here is that the cost in space and time of re-
computing the encoding must not be prohibitive.

To the best of our knowledge no existing technique
meets our requirements. Algorithms based on dynamic
data structures such as linked lists and hash tables are
slow and exhibit unpredictable behavior. Constant-
time techniques either require large amounts of space,
as for the bit matrix encoding, or are quite complex to
compute, as for the hierarchical encoding [2], [12].

In this paper, we present three new encodings of the
subtype relation, the packed encoding, the bit-packed

encoding and the compact encoding. We describe how
they are computed and how they are used to imple-
ment constant-time tests. The packed encoding extends
to multiple subtyping an algorithm �rst described by
Cohen [3] and rediscovered independently by Queinnec
[13]. When multiple subtyping is not used our solution
is the same as Cohen's. We improve on the runtime per-
formance of tests by removing a bound check advocated
by Cohen. The code sequence that implements the type
test is short enough to be inlined and thus avoid the cost
of an extra call. The computation of the packed encod-
ing is very fast and requires little memory. Thus, it is
well suited for on-the-
y updates of the hierarchy. Fur-
thermore, there are categories of updates that do not
require recomputing the encoding. The second new en-
coding, called bit-packed encoding, reduces further the
space requirement of the packed encoding at the cost of
slower type inclusion tests. The last encoding, compact
encoding, adapts the compact dispatch table technique
of Vitek and Horspool [16]. It is designed for very large
hierarchies. For small and medium-sized ones, it is less
e�cient than the packed encoding. We compare the
new encodings and algorithms to the bit matrix encod-
ing and the near optimal hierarchical encoding of [12]
and conclude with guidelines for choosing an encoding
of the subtype relation.

The remainder of this paper is organized as follows.
Section 2 introduces terminology, important de�nitions,
and a running example. Section 3 brie
y reviews pre-
vious work in the �eld, including the binary matrix
encoding, Cohen's encoding and the near optimal hi-
erarchical encoding. Section 4 presents the packed en-
coding, the type inclusion test and the encoding con-
struction algorithm. Section 5 presents the bit-packed
encoding. Section 6 presents the compact encoding.

Section 7 compares time and space requirements of the
techniques on a set of 11 benchmark programs. Finally,
section 8 presents our conclusions.

2 De�nitions and Example Hierarchy

A type hierarchy H = hT ; <:i is a set of types T and
a re
exive, transitive, anti-symmetric subtype relation
<:. If A <: B holds, then we say that A is a subtype of
B and B is a supertype of A. In class-based languages
this hierarchy is de�ned explicitly by the programmer
through the subclassing relationship between classes. In
languages with structural subtyping, the subtype rela-
tion is derived automatically.

We also de�ne an anti-re
exive, anti-symmetric di-
rect subtype relation <:d

<:d � fhx 2 T ; y 2 T ijx <: y ^
(6 9z 2 T jx 6= z ^ y 6= z ^ x <: z <: y)g

The subtype relation is represented by a directed acyclic
graph, shown in �g. 1, with vertices for types and edges
for the subtype relation. By convention, we draw su-
pertypes above their subtypes and draw only edges in
<:d. We also need the following de�nitions:

roots(T) � fx 2 T j 6 9y 2 T : x <: yg
parents(x) � fy 2 T jx <:d yg
children(x) � fy 2 T jy <:d xg
ancestors(x) � fy 2 T jx <: yg
descendants(x) � fy 2 T jy <: xg
multis(T) � fx 2 T jcard(parents(x)) > 1g

where card(S) is the cardinality of a set S.Roots is the
set of top level types. Parents and children are sets of
direct supertypes and subtypes, respectively. Ancestors
and descendants are sets of all subtypes and supertypes
of a type. Multis is the set of all types with more than
a single direct supertype.

A

B C E G

D F

Figure 1: A small type hierarchy.

class Object rep f

Type rep type rep

...

g

Figure 2: Object runtime representation.

A single subtyping type hierarchy restricts the num-
ber of direct parents to one, card(parents(x)) � 1. We
assume single rooted hierarchies, i.e. card(roots(T)) =
1. In practice, we �x hierarchies that do not ful�ll
this assumption by adding an extra root type R so
that children(R) = roots(T). The hierarchy of �gure
1 is a multiple subtyping hierarchy, with roots(T) =
fAg, multis(T) = fD;Fg, parents(F) = fE;Gg and
ancestors(F) = fA;E;Gg.

We de�ne the level of a type in a hierarchy as the
length of its longest path to the root:

level(x) �

�
0 if parents(x) = fg

max(L) + 1 otherwise

where

L � flevel(y)jy 2 parents(x)g

For the runtime representation of objects, we as-
sume they are implemented by data structures with, as
a common pre�x, a reference to a type information data
structure, the Type rep �eld of �g. 2. In many imple-
mentations this �eld can be merged with the dispatch
data structure (e.g. the vtbl of C++).

Unless explicitly stated, the type test instruction se-
quences check subtyping against a type known at com-
pile-time. This corresponds to a test of the form

obj instanceof A

where A is a type constant. This is the most frequent
use of a subtype test. We assume that the compiler or
linker uses this information to �ll in the values of the
appropriate constants once the program is complete.

As a convention, we pre�x compile- and link-time
constants with a #.

3 Previous Work

3.1 Hierarchy Traversal Algorithms

Type inclusion tests for single subtyping are trivially
implemented by traversing a linked list of types, as pro-
posed by Wirth [17]. The linked list encoding requires
little space and may be updated incrementally. Unfor-
tunately, tests are slow, running in time proportional
to the distance between the two types in <:d. This led

Wirth to switch to a constant-time scheme for Oberon
[18]. Linked data structures for multiple subtyping only
increase the cost of type tests. We have experimented
with linked representations as well as with other non-
constant-time schemes based on hashing while working
on this paper. Non-constant-time techniques are much
slower than the algorithms discussed in the remainder of
the paper. We decided to concentrate on constant-time
solutions.

3.2 Constant-time Algorithms

3.2.1 Binary Matrix (BM)

Type inclusion tests can be performed in constant-time
if the subtype relation is encoded as a binary matrix.
If N = card(T), and
 : T ! [1 : : :N] is a one-to-one
mapping from types to indices, we build a N�N binary
matrix MBM such that:

MBM [
(x);
(y)] �

�
1 if x <: y
0 otherwise

The binary matrix encoding for the hierarchy of �g. 1
is shown in �g. 3(a).

The runtime representation of types decomposes the
matrix into rows corresponding to a type and stores
each row into a Type rep data structure, �g. 3(b). Ev-
ery type representation has the same layout. This data
structure has two �elds: a position, pos, and a sequence
of (N + 31) mod 32 words, row. The position �eld en-
codes
 and is used during type inclusion testing to
compute a word index and a bit index. If we assume
32 bit words, the word index is pos >> 5 and the bit
index is pos & 31.

With BM, a type inclusion test is simply an array
access, a bit shift and a comparison. Figure 3(c) tests
whether the type of an object obj is a subtype of a
type with known word pos and bit pos. The machine
instruction sequence for this test is given in the ap-
pendix.

This encoding is trivial to compute. Its main draw-
back is that it has quadratic space requirements. For
large programs, half megabyte matrices are easily con-
ceivable. Nevertheless, the simplicity of the binary ma-
trix has motivated its use in practice [11], [4].

The other constant-time algorithms presented in this
paper use encodings which can be viewed as compressed
forms of the binary matrix. The constraint on the com-
pression is that very fast random access to elements
must be guaranteed. In this view, the works on parse
table optimization and dispatch table optimization are
closely related, as, in both cases, their aim is to com-
press sparsely populated matrices. The parse table com-
pression techniques discussed by Dencker, D�urre and

A 0
B 1
C 2
D 3
E 4
F 5
G 6

A 1 0 0 0 0 0 0
B 1 1 0 0 0 0 0
C 1 0 1 0 0 0 0
D 1 0 1 1 1 0 0
E 1 0 0 0 1 0 0
F 1 1 0 0 0 1 1
G 1 0 0 0 0 0 1

 0 1 2 3 4 5 6

MBM

(a) The encoding of �gure 1.

class Type rep f

int32 pos

array [1...N] of int32 row

g

(a) Runtime data structures.

Type rep type := obj.type rep

int32 word := type.row[#word pos]

if (bit extract(word, #bit pos) = 1)

(c) Type inclusion test.

Figure 3: Binary Matrix (BM).

Heuft [5] have in
uenced works in the �eld of dispatch
table compression [7], [15]. The compact encoding is in
fact a straightforward adaptation of compact dispatch
tables of [15].

3.2.2 Cohen's Algorithm

Cohen proposed the �rst practical algorithm for per-
forming subtype tests in constant-time [3]. Cohen's idea
is a variation of Dijkstra's \displays" [6]. Each type
is identi�ed by a unique type identi�er, tid, which is
simply a number. The runtime type information data
structure also records each type's complete path to the
root as a sequence of type identi�ers. The key trick is
to build, for each type x, an array of card(ancestors(x))
type identi�ers so that for each ancestor y, the tid of
y is stored at an o�set equal to level(y) in the array.
The Cohen encoding for sample hierarchy of �g. 4(a) is
given in �g. 4(b).

With this encoding, type inclusion tests reduce to
a bound-checked array access and a comparison opera-
tion. The bound check is necessary as array sizes are
not uniform. The runtime data structure, shown in

�g. 4(c), consists of a level �eld, level and a sequence
of L type identi�ers, row, where L is equal to the value
of the current type's level. Note that the type iden-
ti�er of a type x is stored at x.row[x.level]. The
code sequence that tests whether an object's type is a
subtype of some known type is shown in �g. 4(d).

The advantages of Cohen's algorithm are that it is
both easy to understand and easy to implement, it per-
forms tests in constant-time and requires little space.
The packed algorithmof section 4 extends the algorithm
to multiple subtyping and proposes a type inclusion test
that is faster than the one outlined above.

A

B

D

C

(a) A small single subtyping hierarchy.

tid lvl

A 1 0
B 2 1
C 3 1
D 4 2

A 1

B 1 2

C 1 3

D 1 2 4

(b) The encoding of �gure 4(a).

class Type rep f

int16 level

array [0...L] of int16 row

g

(c) Runtime data structures.

Type rep type := obj.type rep

if (type.level � #level

&& type.row[#level] = #tid)

(d) Type inclusion test.

Figure 4: Cohen's encoding.

3.2.3 Hierarchical Encodings (NHE)

Hierarchical encoding represents each type with a set of
integers. This set must be chosen so that

x <: y ,
(x) �
(y)

where
(x) maps type x to its set representation. Thus,
the set of a subtype has to be a superset of the set repre-
senting its parent. The sets have a natural representa-
tion as bit vectors; an example is shown in �g. 5(a). In
the bit vector representation the test function becomes

x <: y ,
(x) _
(y) =
(x)

or alternatively

x <: y ,
(x) ^
(y) =
(y)

A simple, but ine�cient way to construct the bit vec-
tors is to map each type into the corresponding row of
the binary matrix of section 3.2.1. The resulting bit
vectors are extremely sparse as the number of ancestors
of a type is usually much smaller than the total num-
ber of types. Better techniques have been proposed in
the literature, in particular the modulation method3 of
A��t-Kaci et al. [1] and the gene encoding technique of
Caseau [2], which try to minimize the range of integers
used to construct the sets, thus shortening the corre-
sponding bit vectors. It is well known that �nding an
optimal bit vector encoding for partial ordered sets is
NP-hard [10] and that there exist classes of partial or-
dered sets (distributive and simplicial lattices) where
an optimal encoding is as large as the number of types
with only one supertype [10]. Fortunately, type hierar-
chies can be encoded much more compactly than dis-
tributive lattices. In a previous paper, we have devel-
oped a new and improved version of the Caseau ap-
proach [2] which we call Near Optimal Hierarchical En-
coding (NHE) [12]. This version generalizes Caseau's
algorithm by expressing it as a graph coloring prob-
lem. It is able to encode arbitrary partially ordered
sets rather than just lattices [2]. Our algorithm gen-
erates the sets faster and generates much smaller sets
(about 50% percent smaller than our implementation of
[2]), thus making type inclusion tests more e�cient.

A complete description of the algorithm can be found
in [12], we will summarize it brie
y here. A simple ver-
sion of the technique would assign a set element (i.e. a
position of a bit in the bit vector) to each node in the
type hierarchy graph. This element distinguishes the
node from other nodes. This distinguishing element is
called a gene by Caseau. The set representation for a

3The modulation method is an e�cient encoding of lattices which
is used to perform lattice operations such as �nding the least upper
bound or greatest lower bound, as well as relative complementation.
Type hierarchies are not necessarily lattices.

A 0000

B 1000

C 0100

D 0110

E 0010

F 0011

G 0001

(a) The encoding �g. 1.

class Type rep f

array [1. . .H] of int32 row
g

(b) Runtime data structures.

Type rep type := obj.type rep

if ((type.row[i] & #rowi) = #rowi)

// repeated for i from 1 to H

(c) Type inclusion test.

Figure 5: Near Optimal Hierarchical Encoding (NHE).

type is formed as the union of all its ancestor's sets of
genes plus its own gene. However, if the set of ancestors
of a type x with more than one immediate parent is not
a subset of another ancestor set, then x does not need a
gene. We can construct a con
ict graph where the nodes
represent types and the edges connect types which are
not allowed to use the same gene. Graph coloring is
then used to assign di�erent genes to con
icting nodes.
A crucial part of the technique, performed prior to com-
puting the con
ict graph, is inserting extra nodes into
the hierarchy in order to balance the graph { the aim is
to reduce the maximum number of children possessed
by any node and that will tend to reduce the number of
nodes that require distinct genes. Fig. 5(a) shows the
NHE encoding of the example hierarchy (�g. 1). The
algorithm uses only four genes as D and F are able to
reuse the genes of their parents, the root A does not
need a gene as it encodes the empty set. This tech-
nique yields the optimal encoding for single subtyping
and near optimal encoding for multiple subtyping hier-
archies.

The bit vector is of �xed size and can be stored at
any �xed position inside the class object. The runtime
data structure is shown in �g. 5(b), row is a sequence
of H integers, H is the length of the bit string in words.

The comparison part of the test function has to be repli-
cated for each machine word used in the bit vector.
This leads to the problem that with increasing code
length both execution time and instruction space in-
crease. The number of unrollings is only known at link
time when the entire hierarchy is at hand, so the al-
gorithm is constant-time at run-time but not constant-
time at compile-time4. The implementation of the run-
time test against a known bit vector (#row) is shown in
�g. 5(c).

This implementationwill be referred to as inline near
optimal hierarchical encoding, INHE. It has three draw-
backs: �rst it requires varying numbers of instructions,
second, even in the best case, the instruction sequence
is longer than for the other algorithms. This causes
code bloat as discussed in sect. 7.3. A slightly slower
alternative is to wrap the test in a function, we refer
to this solution as the generic near optimal hierarchical
encoding, or GNHE. GNHE is implemented by coding
a number of similar type test functions, one for each
unrolling factor. Then, depending on the length of the
bit vector, the appropriate test function will be called.
The third drawback of the method is that it is compu-
tationally intensive and that the full encoding must be
regenerated after any change to the type hierarchy.

3.3 Relative Numbering

We mention brie
y one last encoding of the subtype re-
lation based on relative numbering of trees. In a tree it
is possible to �nd out if a node is a child of another node
as follows. For each node store two numbers, left and
right. Traverse the tree in order, for each new node in-
crement a counter c. When a node is �rst encountered,
store c in left. When the traversal leaves the node store
the current value of c in right. A node n1 is a child of
a node n2 if

n2:left � n1:left ^ n1:left � n2:right

A single subtyping hierarchy is a tree; relative number-
ing is therefore a very compact and elegant represen-
tation of the single subtyping relation. This scheme is
used in the DEC SRC Modula-3 system. Unfortu-
nately, there is no obvious way to extend the technique
to multiple subtyping.

4This use of \constant" is a slight abuse of language. In our set
of benchmark programs the maximal number of unrollings is 3 as the
longest bit vector length is 96, [12]. The longest test takes 18 machine
instructions. The shortest test is performed in 8 machine instructions.
Note also that the number of instructions is solely determined by the
supertype. So, if the supertype is known at link-time (this accounts
for the overwhelming majority of type tests in real programs) the
number of instructions needed is also known statically.

4 Packed Encoding (PE)

Experience with binary matrices shows that they are al-
ways sparse. It is therefore not surprising that they can
be compressed. We propose a technique which works
well in practice and manages to reduce the size of en-
codings of real type hierarchies.

In the binary matrix encoding,
 is a one-to-one
mapping from types to matrix indices. Each type has a
column and a row of the matrix. In the packed encod-
ing, we propose to reuse columns for unrelated types.
This reuse of columns is similar in spirit to the reuse
of genes in hierarchical encoding and to the levels of
Cohen's algorithm.

4.1 The encoding

For the packed encoding of a hierarchy hT ; <:i with N

types, we construct a N � P bucket matrix MPE

MPE : T � [1 : : :P]! tid

so that

x <: y , MPE [x;
(y)] = MPE [y;
(y)]

where
 : T ! [1 : : :P] maps types to columns in-
dices (N.B. we call columns of MPE , buckets), and
� : T ! tid maps types to identi�ers, which are simply
small numbers. The number of columns P is computed
by the bucket assignment algorithm of sec. 4.3. For an
example of packed encoding, consider �g. 6 which en-
codes the hierarchy of �g. 1.

The type inclusion test to determine whether A is a
subtype of B proceeds as follows:

A <: B � MPE [A;
(B)] = MPE [B;
(B)]
MPE [A; 1] = MPE [B; 1]

1 = 1
true

Buckets partition the set of types according to a sim-
ple rule: no two types in the same bucket may have

A 1
B 2
C 2
D 3
E 4
F 3
G 2

A 1
B 1
C 2
D 1
E 1
F 2
G 3

�

A 1 0 0 0
B 1 1 0 0
C 1 2 0 0
D 1 2 1 0
E 1 0 0 1
F 1 3 2 1
G 1 3 0 0

 1 2 3 4

MPE

Figure 6: Packed encoding of �g. 1.

common descendants. Thus a valid packed encoding
must abide by the following bucket assignment rule.

Rule 1 Bucket assignment. Types in the same bucket

can not have common subtypes.

(x) =
(y)) descendants (x)\descendants(y) = fg

where x 2 T ^ y 2 T ^ x 6= y.

Clearly, this rule implies that in pathological cases the
packed encoding may degenerate into a binary matrix.
This occurs for a
at hierarchy with a bottom element
that is a subtype of every other type. Fortunately, such
a hierarchy is unlikely as it implies that some type has
all the operations and attributes of all other types in
the program.

Identi�ers are assigned so as to ensure that two types
in the same bucket will not have the same identi�er. A
valid encoding must abide by the following identi�er

assignment rule.

Rule 2 Identi�er assignment rule. Types in the same

bucket have di�erent identi�ers.

(x) =
(y)) � (x) 6= � (y)

where x 2 T ^ y 2 T ^ x 6= y.

4.2 Implementing type inclusion tests

The runtime representation of a type assumed by the
packed encoding is shown in �g. 7(a). It is composed
of a short integer bucket which represents the bucket
to which the type was assigned, i.e. the value of
, and
an array of bytes, row, which contains the identi�ers of
all ancestors of the type|each array is a row of MPE .
The type identi�er (i.e. the value of �) does not need
to be stored explicitly as it can be fetched from row.
Furthermore, type identi�ers can be small numbers as
the assignment rule (rule 2) does not require them to be
globally unique. Identi�ers need only be unique within
a bucket. In our set of benchmarks, only a few buckets
contain more than 255 types. So, we chose to limit
identi�ers to a byte and create additional buckets when
necessary.

The type inclusion test for checking whether an ob-
ject obj is a subtype of a type with identi�er #tid and
bucket #bucket is shown in �g. 7(b). The type test is
faster than Cohen's encoding; it is not necessary to per-
form a bound check since all row arrays have the same
length. The machine instruction sequence, shown in the
appendix, is four instructions long. This is shorter than
any known multiple inheritance dispatch sequence5 and
probably short enough to be inlined.

5Single inheritance dispatch in a statically typed language can be
done in three instructions [8]. Note also, that multiple subtyping
dispatch in Java can be done in 3 instructions [11].

class Type rep f

int8 bucket

array [1 ...P] of int8 row

g

(a) Runtime data structures.

Type rep type := obj.type rep

if (type.row[#bucket] = #tid)

(b) Type inclusion test.

Figure 7: Implementing the Packed Encoding (PE).

4.3 Computing the packed encoding

The bucket assignment rule can be turned into an algo-
rithm without too much e�ort. It su�ces to associate
with every type the set of its descendants, and to main-
tain, for every bucket, a set that is the union of the
descendant sets of all of the types it contains. The al-
gorithm is then to build a list of types sorted by their
level, to guarantee that we visit parents before children.
Then, for each type in the list, the algorithm must �nd
a bucket for which the intersection between the bucket's
set of descendants and the type's set of descendants is
empty. If no such bucket can be found, a new bucket
is added. This is what we did in an earlier version of
this paper. Unfortunately, the result is an extremely
ine�cient algorithm which spends most of its time per-
forming intersections and unions of large sets|the sets
are arbitrary subsets of T .

We present a more sophisticated algorithm which is
an order of magnitude faster and yet remains simple
and easy to implement. The crucial idea is to separate
the single subtyping portion of the hierarchy from the
multiple subtyping portion and to use this to re�ne the
bucket assignment rule. We start by de�ning three dis-
joint subsets of T . The �rst subset is the set of join
types. A join type is a type with multiple parents (i.e.
direct supertypes) which has only single subtyping de-
scendants.

join(T) � fx 2 multis(T)j 6 9y 2 multis(T) : y <: xg

The second subset is the set of spine types. Any ances-
tor of a join type belongs to this set.

spine(T) � fx 2 ancestors(y)jy 2 join(T)g

The last subset is the set of plain types, these are types
which are neither in spine nor in join. A plain type is

a type that has a single parent, and whose descendants
are also plain types.

plain(T) � T � (spine(T) [join(T))

We will also use two list building functions level order
and rev level order. Each of them returns a list of types
sorted by their level.

level order(S) � [x1; : : : ; xN]
where N � card(S);
and level(xi) � level(xi+1)

rev level order(S) � [x1; : : : ; xN]
where N � card(S);
and level(xi) � level(xi+1)

Rule 3 Bucket assignment (plain and join). Plain and

join types may be assigned the same bucket only if they

are not related by <:.

(x) =
(y)) x 62 ancestors(y) (a)

(x) =
(y)) y 62 ancestors(x) (b)

where x 2 join(T)[plain(T) ^ y 2 join(T)[plain(T)^
x 6= y.

This rule is trivial since, for single subtyping, the only
way for two types to have a common descendant is that
either x <: y or y <: x.

Rule 4 Bucket assignment (spine). Two spine types

may be assigned the same bucket only if they have no

join type in common.

(x) =
(y)) joins(x) \ joins(y) = fg

where x 2 spine(T) ^ y 2 spine(T) ^ x 6= y ^

joins(z) � descendants (z) \ join(T).

This rule is equivalent to rule 1. By construction, every
spine type has one or more join nodes in its descendants
list. If x <: y then joins(x) \ joins(y) = joins(x) 6= fg.
If y <: x then joins(x) \ joins(y) = joins(y) 6= fg.
If x 6<: y and y :6> y then if the types have common
descendants at least one of them must be in spine(T).

The bucket assignment algorithm, shown in �g. 8
starts by assigning buckets to spine types, as the other
types depend on them. Spine types are visited in reverse
topological order as the lower types are less likely to
con
ict with each other. A spine type is added to a
bucket if the bucket is not full (fewer than 255 types)
and if adding the type to the bucket does not violate
rule 4. Checking the validity of the rule requires types
and buckets to have a set of join types. The set of
join types of the bucket is updated each time a type
is added. Note that the size of these sets is limited by

the number of join nodes in the hierarchy. If there is
no bucket where to put the type, a new bucket must
be created. Another reason for visiting join types in
reverse level order is that we can build the join sets while

T := load hierarchy()
Buckets := fg

foreach(x 2 T)
x:joins := fg

x:used := fg

foreach(x 2 join(T))
foreach(y 2 parents(x))

y:joins := y:joins [fxg

foreach(x 2 rev level order(spine(T)))
found := false

foreach(b 2 Buckets)
if(card(b:elements) � 255
^ x:joins \ b:joins = fg)
found := true

b:elements := b:elements [fxg

b:joins := b:joins [x:joins

break

if(found = false)
b := newBucket

Buckets := Buckets [fbg

b:elements := b:elements [fxg

b:joins := x:joins

foreach(y 2 parents(x))
y:joins := y:joins [x:joins

foreach(x 2 level order(plain(T) [join(T)))
found := false

foreach(b 2 Buckets)
if(card(b:elements) < 255^ b 62 x:used)

found := true

b:elements := b:elements [fxg

x:used := x:used [fbg

break

if(found = false)
b := newBucket

Buckets := Buckets [fbg

b:elements := b:elements [fxg

x:used := x:used [fbg

foreach(y 2 children(x))
y:used := y:used [x:used

Figure 8: Bucket assignment algorithm.

assigning buckets. After assigning a bucket to a type,
the join sets of the parents of the type are updated with
the joins of the current type. The second part of the
algorithm deals with non-spine types. These types are
visited in level order to ensure that buckets are assigned
to parents before children. All that needs to be done is
to compute for every type, the set of buckets that have
already been used by its ancestors. Any bucket not
in this set can be used for the type. This implements
rule 3.

Building the runtime data structures once the buck-
ets have been assigned is merely a matter of traversing
the bucket set in any order and creating Type rep ob-
jects. We maintain a counter n that indicate the column
index of the bucket, this is used for setting bucket (
)
and an intra bucket counter c which is used for type
identi�ers (�). The size of the rows, P , is the cardinal-
ity of the set of buckets. The last stage of the algorithm
is to traverse the hierarchy in level order and set the row
�elds of all types to their correct values.

P = card(Buckets)
n := 0
foreach(b 2 Buckets)

c := 0
n := n+ 1
foreach(x 2 b:elements)

c := c+ 1
x :type := newType rep

x :type:bucket := n

x :type:row :=
newArray [1 : : :P] of int8

foreach(i 2 [1 : : :P])
x :type:row [i] := 0

x :type:row [x :type:
] := c

foreach(x 2 level order(T))
foreach(y 2 children(x))

foreach(i 2 [1 : : :P])
y :type:row[i] :=

y :type:row[i] j x :type:row[i]
// j is the logical-or operator

Figure 9: Building the PE type representation.

4.4 Discussion

The bucket construction algorithm is quite fast (see
sec. 7.2), but does not guarantee an optimal bucket as-
signment. In some cases it may allocate too many buck-
ets. Consider the type hierarchy of �g. 10, The optimal
assignment is

A

B C D E

F G H

Figure 10: Type hierarchy.

Bucket 1 2 3 4

Types A B;D C;E F;G;H

Depending on the order in which level{1 types are vis-
ited the algorithm may return the following bucket as-
signment:

Bucket 1 2 3 4 5

Types A B;E C;H D;F G

This assignment requires one extra bucket. Because B
and E were put in the same bucket, C and D had to be
placed in di�erent buckets.

The obvious approach for �nding the optimal assign-
ment would require graph coloring, which we wanted to
avoid, as one of the strong points of this algorithm is its
speed. But, before looking for more complex solutions,
it is a good idea to evaluate what there is to gain. One
way to do this is to compute an approximation of the
lower bound on the number of buckets needed in our
set of benchmark programs and compare that with the
number of buckets generated by the bucket assignment
algorithm. A very simple lower bound is the largest
value of ancestors(x) for each hierarchy. It is guaran-
teed by the bucket assignment rules that the optimal
encoding will have at least that many buckets. We have
done that for our benchmark programs. The results are
summarized in table 1. The only three programs where
we actually lose are GEO, EDE and LOV; all three
are the output of a code generator which makes exten-
sive use of multiple subtyping|see 7.1 for a description

Hierarchy VW2 DG3 NXT ET+ UNI SLF

max ancestors 15 14 8 9 10 41
comp. buckets 15 14 8 9 10 41

Hierarchy GEO LOV EDE LAU JAV

max ancestors 50 24 23 16 7
comp. buckets 51 27 26 16 7

Table 1: Assessing the quality of bucket assignments.

of the benchmark suite. The di�erence in the case of
GEO is one bucket and, for LOV and EDE, three buck-
ets. Such small numbers do not warrant complicating
the algorithm. We also believe that these examples are
atypical in their heavy use of multiple subtyping.

5 Bit-Packed Encoding (BPE)

The choice of an uniform bucket length for the packed
encoding was motivated by an emphasis on speed of
type inclusion tests. If data size is the issue, the en-
coding can be compressed further by allowing variable
bucket lengths. A length of 8 bits is used for PE which
allows 255 types to share the same bucket. In practice,
the number of types that actually share a bucket is much
lower. In fact, for the multiple subtyping hierarchies of
our benchmark suites, 33% of the buckets contain a sin-
gle type. These buckets actually need a single bit. The
bit-packed encoding (BPE) uses variable sized represen-
tations for buckets. With this simple change it improves
the compression rate of all multiple subtyping examples
of the benchmark suite (see section 7.3).

The BPE encoding is generated by an algorithm
which is run after PE generation and which simply
packs as many buckets as possible in a single word.
Fig. 11(a) shows the result for the hierarchy of �g. 1.
The value of
 is the o�set in the bit string, � is the
type identi�er bit string. For practical purposes, the
BPE algorithmwill not split type identi�ers across word
boundaries. Thus words may be padded to 32 bits if
needed. In �g. 11(a), the identi�er of type A requires
single bit while those of all the other type require 2 bits.

The main di�erences between PE and BPE are their
runtime data structures and type inclusion tests. With
the bit-packed encoding, each Type rep contains an ar-
ray ofB 32 bit words, row, where B is obtained by pack-
ing the PE encoding. Type identi�ers are represented
by numbers no larger than 8 bits at an arbitrary o�set in
a word. To be able to extract a type identi�er, it is thus
necessary to know its word, its position in a word and its
length. Thus, a Type rep contains a bucket word �eld,
a bucket pos �eld and a bucket mask. The last �eld is
used to mask irrelevant bits out of a byte. The runtime
data structure is shown in �g. 11(b). The type inclusion
test, shown in �g. 11(c), extracts the type identi�er by
shifting by bucket pos and masking with bucket mask.

We refer to the machine instruction sequence for
the BPE test of �g. 11(c) as inline bit-packed encoding

(IBPE). The IBPE type test takes 6 machine instruc-
tions. Similarly to the INHE, long instruction sequences
may lead to code bloat. This can be avoided by per-
forming most of the type test out of line, in a separate
procedure. This variant of BPE is called generic bit-

packed encoding (GBPE). It reduces the per test site

overhead to 3 instructions. The GBPE type test is given
in the appendix.

The BPE has another advantage over PE. For the
worst case scenario of a
at hierarchy described in sec-
tion 4.1, the space needed for BPE is exactly the same
as for the binary matrix. With PE's uniform bucket
lengths, the encoding is 8 times as large.

A 1
B 2
C 2
D 4
E 6
F 4
G 2

A 1
B 01
C 10
D 01
E 01
F 10
G 11

�

A 100000
B 101000
C 110000
D 110010
E 100001
F 111101
G 111000

 123456

MBPE

(a) Encoding of �g. 1.

class Type rep f

int8 bucket word

int5 bucket pos

int8 bucket mask

array [1 ...B] of int32 row

g

(b) Runtime data structures.

Type rep type := obj.type rep

int32 word := type.row[#bucket word]

word := word >> #bucket pos

word := word & #bucket mask

if (word = #tid)

(c) Type inclusion test.

Figure 11: Bit-Packed Encoding (BPE).

6 Compact Encoding (CE)

A notable characteristic of all constant-time encodings
is redundancy. In Cohen's encoding, a row di�ers from
its parent in only one position. With multiple subtyp-
ing, more than one position may di�er as each type
may have more than one parent. Yet, in general, rows
remain fairly constant from one generation to the next.

The compact encoding is a straightforward adaption
of the compact dispatch table technique of Vitek and

Horspool [15]. It reduces repetition by introducing shar-
ing between rows of a type matrix. The idea is simple,
start with a N�M matrix (either a binary matrix or the
packed encoding, in the followingwe take the packed en-
coding) and break it into a number, m, of chunks. Each
chunk is composed of N rows and Mi columns. Then,
for each chunk, compare all rows and merge equal rows.

A
1 1
B
2 1
C
2 1
D
3 2
E
2 1
F
3 2
G
2 1

i

A 1
B 1
C 2
D 1
E 1
F 2
G 3

�

A;B;C;D;E; F;G 1

1 1

M1CE

A;E 0
B 1

C;D 2
F;G 3

2 1

M2CE

A;B;C;G 0 0
D 1 0
E 0 1
F 2 1

3 1 2

M3CE

(a) The encoding of �g. 1.

class Type rep f

short chunk

short bucket

array [1...M] of Row row

g

class Row f

array [1...mi] of int8 elem

g

(b) Runtime data structures.

Type rep type := obj.type rep

Row row := type.row[#chunk]

if (row.elem[#bucket] = #tid)

(c) Type inclusion test.

Figure 12: Compact Encoding (CE).

This yields a set of smaller, Ni �Mi, matrices where
Ni � N andMi �M for each of the chunks. The choice
of the chunk size and of the column in which to put in
a chunk relies on heuristics as discussed in [15].

The compact encoding for the small type hierarchy
of �g. 1 is shown in �g. 12(a). In this encoding the
packed matrix (7 � 5) is split into three chunks. So,
with m = 3, the three chunks have dimensions 1 � 1,
4� 1, and 4� 2.

The runtime data structure for each Type rep con-
sists of a short integer chunk which indicates which
i
to use, a second short integer bucket which is the value
of
 and an array of rows, row. An element in this ar-
ray of rows is a chunk, a portion of one of the rows of
the original matrix. The actual Row objects are shared
by multiple Type rep objects. Fig. 12(b) shows these
data structures. As before, the type identi�er may be
recovered from the type, so the identi�er of type x is
stored at x.row[x.chunk].elem[x.bucket]. The type
inclusion test against a type with chunk #chunk, bucket
#bucket and identi�er #tid is shown in �g. 12(c).

7 Evaluation

This last section evaluates the di�erent constant-time
type inclusion test techniques according to four criteria:
the runtime characteristics of the type test algorithms,
space requirements of the associated encoding, genera-
tion time of the encoding and suitability for incremental
hierarchy modi�cations.

We compare �ve algorithms: the binary matrix (BM)
of section 3.2.1, the near optimal hierarchical encodings
(NHE) of section 3.2.3, the packed encoding (PE) of
section 4, the bit-packed encoding (BPE) of section 5,
and the compact encoding (CE) of section 6. Type
tests with NHE and BPE can be either performed in-
line (INHE and IBPE) or in a separate function (GNHE
and GBPE). We refer to the algorithms by the above
mentioned acronyms.

7.1 Benchmark data sets

Choosing data sets to compare encodings is a tricky
task. While it is fairly easy to generate arbitrary di-
rected acyclic graphs, they seldom resemble those of real
programs. For example, the degree of multiple subtyp-
ing that humans seem to be comfortable with is usu-
ally quite low; the average number of direct supertypes
is very close to 1 in all large programs we have been
able to study. The encodings that we want to compare
have been designed to be space e�cient representation
of type hierarchies, we thus feel that it is necessary to
compare them on real-life data sets.

Library Lang. Types Level Parent Ancestor
num. max. (max./avg.) (max./avg.)

VW2 Smalltalk 1956 15 1 / 1 15 / 6.40
DG3 Smalltalk 1357 14 1 / 1 14 / 6.40
NXT Obj.-C 311 8 1 / 1 8 / 3.94
ET+ C++ 371 9 1 / 1 9 / 4.30
UNI C++ 614 10 2 / 1.01 10 / 4.02
SLF Self 1802 18 9 / 1.05 41 / 30.88
GEO Eiffel 1319 14 16 / 1.89 50 / 14
EDE Eiffel 434 11 7 / 1.66 23 / 7.99
LOV Eiffel 436 10 10 / 1.71 24 / 8.50
LAU Laure 295 12 3 / 1.07 16 / 8.13
JAV Java 225 7 3 / 1.04 7 / 3.43

Table 2: Benchmark type hierarchies.

Another consideration is whether to include single
subtyping hierarchies. Since single subtyping is a spe-
cial case of multiple subtyping, and it is fairly common
to �nd single subtyping hierarchies in languages with
multiple subtyping (e.g. ET++, see below), we must
include single subtyping in this evaluation. Further-
more, as the packed encoding (PE) reduces to Cohen's
encoding in the single subtyping case, it is interesting
to compare its space requirements with those of the hi-
erarchical encoding.

We use a collection of 11 medium to large type hier-
archies to evaluate encodings6 [9].

Some descriptive data about the hierarchies is given
in table 2. Level indicates the depth of each hierarchy,
parent gives both the largest and average number of
direct supertypes, and, �nally, ancestors gives largest
and average number of supertypes for each hiearchy.

VW2 and DG3 are both large Smalltalk-80 class
libraries, respectively VisualWork2 and Digitalk3. Each
class corresponds to a type, the subtype relation is the
inheritance relationship between classes. VW2 is our
largest hierarchy with almost 2000 types. VW2 is also
quite deep with 15 levels. NXT contains types extracted
from the NeXTStep class library. ET+ is the ET++
graphical user interface library. UNI is the Unidraw
C++ toolkit. SLF contains data extracted from the
Self system7. This is our largest multiple subtyping
example, it is also the deepest hierarchy (18 levels). No-
tice that the maximum number of parents is 9 which is
rather high. The largest number of ancestors 41 and
the average number of ancestors is more than 30. Both
values are much larger than in class-based languages.
GEO, EDE and LOV are Eiffel applications produced
by a code generator. They exhibit very large amounts
of multiple subtyping, up to 16 parents for GEO. Their
average number of parents is also way higher than that

6We thank Yves Caseau (LAU) and Karel Driesen (VW2, DG3,
ET+, UNI, SLF). The benchmark data set is available from
http://www.cs.ucsb.edu/oocsb/classhierarchies/.

7In Self shared behavior is implemented by maps, for our purpose
each map represents a type.

of the other hierarchies. LAU is the Laure language of
Caseau. Finally, JAV is the Java JDK 1.02 library. We
refer to the data sets by their acronyms.

We consider these hierarchies to be fairly large, but
expect to see much larger hierarchies for big systems.
Another source of large hierarchies is the growing num-
ber of code generators that use object-oriented languages
(Java for example) as their target. Generated code may
use multiple subtyping more extensively as automatic
tools are better at keeping track of complex hierarchies
than human programmers.

7.2 Runtime behavior of type tests

Based on the machine code sequences given in the ap-
pendix, the di�erent algorithms are compared with re-
spect to their speed, instruction count and register us-
age. The comparison is based on a generic RISC ar-
chitecture which executes one instruction every cycle
with a load latency of 2 cycles and no penalty for cor-
rectly predicted branches. The variable H for INHE
and GNHE is a factor of the length of the bit string
encoding the hierarchy. If the word size is 32 bits and
the encoding is n bits, H = (n+31) mod 32. In our set
of programs the largest H was 3. For GNHE, we count
the number of instructions at the call site only. All al-
gorithms under consideration guarantee constant-time
type tests. In the case of the INHE and GNHE, the time
is determined at link-time when the entire hierarchy is
known. The, perhaps surprising, result of table 3 is that
type tests with PE are as e�cient as type tests that use
a binary matrix. The other techniques are slower, re-
quire more registers and have higher instruction counts.

Resources BM INHE GNHE

Cycles 6 3 + 6H 5 + 6H
Instructions 4 3 + 5H 4
Registers 1 4 5

Resources PE IBPE GBPE CE

Cycles 6 8 11 8
Instructions 4 6 3 5
Registers 1 1 3 1

Table 3: Comparing runtime characteristics.

7.3 Space requirements

Table 4 summarizes space requirements of the di�erent
encodings relative to the binary matrix encoding. Com-
pression rates are computed as 1 � (sizeX=sizeBM).
These measurements assume 32 bit pointers and 32 bit
alignment of the data and do not include the size of the
machine code sequences.

The space requirements of the naive approach (BM)
can come close to 0.5MB and these get compressed
down to 16 KB with NHE and 30 KB with PE and
BPE. The size of BM depends on the number of types,
we get equally large hierarchies with single (VW2) and
multiple subtyping (SLF). NHE has consistently bet-
ter compression rates. It performs slightly worse on
inputs containing multiple inheritance like EDE, LOV
and JAV, but interestingly enough performs very well
on SLF and GEO. PE demonstrates good compression
rates for single subtyping and only adequate compres-
sion rates multiple subtyping. BPE improves on PE
for all multiple subtyping hierarchies. For instance for
SLF, the encoding size drops from 77 KB to 28 KB. CE
fails to improve on the PE, except for LOV and EDE
where it performs slightly better. The reason for this
poor performance is that gains due to sharing parts of
bit vectors are o�set by the cost of the additional point-
ers in each type data structure. These numbers suggest
that CE needs larger hierarchies to become pro�table.

Lib. BM NHE PE BPE CE

VW2 485.3 16.0 30.5 30.5 39.3
(96.7%) (93.7%) (93.7%) (91.9%)

DG3 233.4 10.9 21.2 15.9 24.0
(95.3%) (90.9%) (93.2%) (89.7%)

NXT 12.4 1.2 2.4 2.4 3.7
(90.3%) (80.6%) (80.6%) (70.2%)

ET+ 17.8 1.4 4.3 2.8 4.8
(92.1%) (75.8%) (84.3%) (73.0%)

UNI 49.1 2.4 7.2 4.8 8.5
(95.1%) (85.3%) (90.2%) (82.7%)

SLF 410.8 14.7 77.4 28.1 85.0
(96.4%) (81.2%) (93.2%) (79.3%)

GEO 221.5 15.9 66.9 25.7 67.1
(92.8%) (69.8%) (88.4%) (69.7%)

EDE 24.3 3.4 11.9 5.1 10.5
(86.0%) (51.0%) (79.0%) (56.8%)

LOV 24.4 3.4 11.9 5.1 10.8
(86.1%) (51.2%) (79.1%) (55.7%)

LAU 11.8 1.1 4.6 2.3 6.2
(90.7%) (61.0%) (80.5%) (47.5%)

JAV 7.2 0.9 1.8 0.9 2.7
(87.5%) (75.0%) (87.5%) (62.5%)

Table 4: Space requirements (KB/compression rate).

7.3.1 Considering instruction space

We were able to obtain the number of static type check
calls (3861) for the Java library (JDK 1.0.2). If the
space requirements for both the table and the instruc-
tions are considered, the rankings of the algorithms

are completely reversed. The results are presented in
table 5. The generic algorithms (GPBE and GNHE)
win as they require fewer instructions per test site. The
size of the tables actually is irrelevant, code space domi-
nates the size requirements. Nevertheless, the code size
measures should be taken with caution: (1) it is not
clear how representative this data is, (2) many of these
type tests will be inlined away by an optimizing com-
piler, and (3) the JDK1.0.2 hierarchy was quite small.
These numbers should be considered as upper bounds
on size requirements.

Space BM INHE GNHEE

code only 60.3 123.4 60.3
data + code 67.6 124.3 61.2

Space PE IBPE GBPE CE

code only 60.3 90.5 45.2 77.1
data + code 62.1 91.4 46.1 79.6

Table 5: Space requirements with instructions (KB).

7.4 Encoding generation

The time needed to generate the encoding can not be
neglected as it will lengthen the overall compile and link
cycle time or even play a role at runtime in the case of
incremental hiearchy updates.

We have measured the speed of all four algorithms
on a 500 MHz 21164 Alpha processor. The running
times in milliseconds are shown in table 6. These times
were obtained by computing the encoding 100 times for
each hierarchy.

The di�erence between BM, PE, BPE and CE is
quite small, all three algorithms run fast. The worst
time for BM is 10 msecs for VW2 which is the largest

BM (B)PE CE NHE

VW2 10 12 13 890
DG3 6 8 9 426
NXT 1 2 2 30
ET+ 1 2 2 39
UNI 2 3 4 93
SLF 9 11 14 1367
GEO 8 13 23 1902
EDE 2 4 5 136
LOV 1 4 5 168
LAU 1 2 2 21
JAV 1 1 2 19

Table 6: Encoding generation times (msecs).

hierarchy. PE and CE take 13 and 23 msecs, respec-
tively, for GEO which is large and features heavy mul-
tiple inheritance. NHE is slower, yet it still generates
encodings in less than 2 seconds.

7.5 Incremental hierarchy updates

Dealing with changes in the subtyping relation is di�-
cult. As for most table compression algorithms small
changes in the input can result in widely di�erent com-
pressed outputs. Thus it is not always possible to avoid
recomputing the entire encoding.

There are two kinds of changes to the subtype re-
lation: destructive changes, changes that modify the
type graph either by adding or removing edges between
existing vertices, and additive changes, changes that
only add new vertices and new edges to a type graph.
The �rst kind is usually restricted to programming en-
vironments during software development. The second
kind may actually occur at runtime when new software
components are dynamically linked. In class-based lan-
guages, such as Java, new classes and interfaces can
be loaded at arbitrary points during program execu-
tion. The new types thus created are always subtypes
of already existing types. In languages with structural
subtyping, new types may also be supertypes of existing
types.

Supporting dynamic changes to the subtype relation
implies that the information dependent on a particular
encoding must be localized to some well de�ned portion
of the program and easy to change or update to re
ect
the new situation. This comes at a cost in e�ciency.
For one, compile- or link-time constants can not be up-
dated. In general that would prove too costly. Thus
type inclusion tests must be wrapped in function calls
to a generic test function that expects two Type rep

objects and is able to extract the necessary information
for a type test out of their �elds.

Another trick to speed up recomputation of the en-
codings is not to recompute them. Or, at least, to wait
until the last possible time before doing so. The moti-
vation is that changes often come in batches. As it is
economical to recompute for as many types as possible,
we must try to wait until all the types in the batch have
been added before starting the update. What is the lat-
est time? It is either the �rst subtype test, or, if we want
to be more precise, the �rst subtype test that involves
a new type. So, we can either modify|by overwriting
code|the type test function to trigger recomputation,
or add extra information to type representations to in-
dicate whether they have been initialized and add an
extra check to each type test to verify that both types
already have been installed.

In any case, the next question is what to do when re-

computing is necessary. Assume that we have batched
a group of updates. If the batch contains destructive
updates the encoding will have to be recomputed. If
the batch contains no destructive updates, the binary
matrix does not have to be updated. For a new type,
each row has to be extended by an entry and a new row
must be added. The cost of extension can be reduced
by pre-allocating longer rows with some unused entries.
In the case of the hierarchical encoding, recomputing
can not be avoided easily. For the packed and compact
encodings, adding new subtypes does not necessarily
mean recomputing the encoding. Recomputing is only
necessary if we add new join types of previously exist-
ing types. Otherwise the update can be performed by
extending rows. For the bit-packed encoding, the same
comments as for PE apply, except that the encoding
must also be recomputed if the number of bits required
to represent a bucket changes.

When the encoding has to be recomputed, genera-
tion time and memory requirements become important.
BM, PE and BPE have the fastest generation times. CE
follows close behind PE. Finally, NHE is most compu-
tationally intensive algorithm and thus less suited to
frequent encoding generation.

8 Conclusions

In this paper we have looked at the problem of test-
ing for type inclusion in object-oriented programming
languages with multiple subtyping. We evaluated �ve
main techniques for computing type inclusion with dif-
ferent trade-o�s. Which is the best type test method?
If run-time speed is the primary concern, the Packed
Encoding is a clear winner. It ties with the Binary Ma-
trix as achieving the fastest type test times, it is almost
as fast to compute, yet it requires much less storage for
tables. The packed encoding is thus suited for stati-
cally compiled programming languages as well as to en-
vironments that permits dynamic addition of new types
(as with Smalltalk and Java). If space and speed of
tests are equal concerns, the Bit-Packed Encoding is the
best choice as it is consistently more compact than the
Packed Encoding, yet it is fast to compute and guaran-
tees constant time type inclusion tests. If space is the
major concern, our generic Near Optimal Hierarchical
Encoding method will give the best results. Finally, we
believe that the Compact Encoding may compress some
very large hierarchies better than the other encodings
but we were not able to substantiate this hypothesis
with the data at our disposal.

Source code for the algorithms described in this pa-
per is available from:
http://www.complang.tuwien.ac.at/andi/typecheck/

http://cuiwww.unige.ch/~jvitek/fcttit/

Acknowledgments

The authors wish to thank Ole Agesen, Laurent Dami,
Karel Driesen and Manuel Serrano for thoughtful com-
ments on earlier versions of this paper; Christian Quein-
nec for interesting discussions of alternative techniques
and uses of type inclusion tests; and the OOPSLA re-
viewers as their technical comments helped us improve
this paper.

References

[1] H. A��t-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Ef-
�cient implementation of lattice operations. ACM
Transactions on Programming Languages and Sys-

tems, 11(1):115{146, 1989.

[2] Y. Caseau. E�cient handling of multiple inher-
itance hierarchies. In Proc. Conference on Ob-

ject Oriented Programming Systems, Languages

& Applications, OOPSLA'93, Published as SIG-
PLAN Notices 28(10), pages 271{287. ACM Press,
September 1993.

[3] N. H. Cohen. Type-extension type tests can be
performed in constant time. ACM Transactions on

Programming Languages and Systems, 13(4):626{
629, 1991.

[4] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and
C. Chambers. Vortex: An optimizing compiler for
object-oriented languages. In Proc. Conference on

Object Oriented Programming Systems, Languages

& Applications, OOPSLA'96. ACM Press, October
1996.

[5] P. Dencker, K. D�urre, and J. Heuft. Optimiza-
tion of parser tables for portable compilers. ACM
Transaction on Programming Languages and Sys-

tems, 6(4):546{572, October 1984.

[6] E. W. Dijkstra. Recursive programming. Numer.

Programming, (2):312{318, 1960.

[7] K. Driesen. Selector table indexing and sparse
arrays. In Proc. Conference on Object Ori-

ented Programming Systems, Languages & Appli-

cations, OOPSLA'93, Published as SIGPLAN No-
tices 28(10), pages 259{270. ACM Press, Septem-
ber 1993.

[8] K. Driesen, U. H�olzle, and J. Vitek. Message
dispatch on pipelined processors. In Proc. Euro-

pean Conference on Object-Oriented Programming,

ECOOP'95, Lecture Notes in Computer Science.
Springer-Verlag, 1995.

[9] K. Driesen, U. H�olzle, and J. Vitek. The OOCSB
class heterarchy benchmark suite. Technical Re-
port TRCS97-09, Dept. of Computer Science, Uni-
versity of California, Santa Barbara, July 1997.

[10] M. Habib and L. Nourine. Tree structure for dis-
tributive lattices and its applications. Theoretical

Computer Science, 165:391{405, 1996.

[11] A. Krall and R. Gra
. CACAO { a 64 bit JavaVM
just-in-time compiler. In G. C. Fox and W. Li, edi-
tors, PPoPP'97 Workshop on Java for Science and

Engineering Computation, Las Vegas, June 1997.
ACM.

[12] A. Krall, J. Vitek, and R. N. Horspool. Near opti-
mal hierarchical encoding of types. In Proc. Euro-

pean Conference on Object-Oriented Programming,

ECOOP'97, Lecture Notes in Computer Science.
Springer-Verlag, June 1997.

[13] C. Queinnec. Designing MEROON v3. In C. Ra-
thke, J. Kopp, H. Hohl, and H. Bretthauer, editors,
Object-Oriented Programming in Lisp: Languages

and Applications. A report on the ECOOP'93

Workshop, September 1993.

[14] C. Queinnec. Fast and compact dispatching for dy-
namic object-oriented languages. Information Pro-

cessing Letters (accepted for publication), 1997.

[15] J. Vitek. Compact dispatch tables for dynamically-
typed object-oriented languages. M.sc. thesis, Uni-
versity of Victoria, April 1995.

[16] J. Vitek and R. N. Horspool. Taming message
passing: E�cient method look-up for dynamically-
typed languages. In Proc. European Conference on

Object Oriented Programming, ECOOP'94, Lec-
ture Notes in Computer Science. Springer-Verlag,
1994.

[17] N. Wirth. Type extensions. ACM Transactions on

Programming Languages and Systems, 10(2):204{
214, 1988.

[18] N. Wirth. Reply to \type-extension type tests
can be performed in constant time". ACM Trans-

actions on Programming Languages and Systems,
13(4):630, 1991.

Appendix: Implementations in Generic

RISC Assembly Code

In all four code sequences below, control transfers to
the label FAIL if the type inclusion test fails and drops
through to the following instruction if it succeeds.

Binary Matrix

load [object + #type_rep], type_rep

load [type_rep + #word_pos], bit

lshift bit, 31 - #bit_pos, bit

bgez bit, #FAIL

Packed Encoding

load [object + #type_rep], type_rep

load [type_rep + #bucket], tid

cmp tid, #tid

bne #FAIL

Inline Bit-Packed Encoding

load [object + #type_rep], type_rep

load [type_rep + #bucket_word], tid

rshift tid, #bucket_pos, tid

and tid, #bucket_mask, tid

cmp tid, #tid

bne #FAIL

Generic Bit-Packed Encoding

load [object + #type_rep], type_rep

add #0, #par_tid, par_tid

call check_n

check_n:

load [type_rep + #bucket_word], tid

rshift tid, #bucket_pos, tid

and tid, #bucket_mask, tid

cmp tid, par_tid

bne #FAIL

ret

Compact Encoding

load [object + #type_rep], type_rep

load [type_rep + #chunk], chunk

load [chunk + #bucket], tid

cmp tid, #tid

bne #FAIL

Inline Near Optimal

Hierarchical Encoding

load [object + #type_rep], type_rep

sethi high(#parent_type), parent

setlo low(#parent_type), parent

// repeated H times:

load [type_rep], this_tid

load [parent], parent_tid

and this_tid, parent_tid, this_tid

cmp this_tid, parent_tid

bne #FAIL

Generic Near Optimal

Hierarchical Encoding

load [object + #type_rep], type_rep

sethi high(#parent_type), parent

setlo low(#parent_type), parent

call GNHE_H

GNHE_H:

// comparison of one machine word

load [type_rep], this_tid

load [parent], parent_tid

and this_tid, parent_tid, this_tid

cmp this_tid, parent_tid

bne #FAIL

// repeated H times:

ret

