
- 1 -

Translator-Based
Multiparadigm Programming

R. Nigel Horspool & Michael R. Levy
Dept. of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6

E-Mail: nigelh@csr.uvic.ca & mlevy@csr.uvic.ca

Abstract
Better programming productivity may be obtained by choosing suitable program-

ming paradigms. For development of complex software systems, multiparadigm

programming would usually be appropriate. However, its use may be hindered by

a lack of languages and programming support tools. As this paper argues, multi-

paradigm programming may be supported by translators that convert programs

written in one language to another language based on a different paradigm.

Keywords and Key Phrases: Programming Paradigm, Multiparadigm Program-

ming, Object-Oriented Programming.

1 INTRODUCTION

Conventional programming languages (that is,imperative programming languages) have been
criticized for lacking a simple mathematical basis, for the difficulties they bring to the production
of verifiable (and hence reliable) software, for lacking logical clarity and for forcing a sequential
way of thinking on the programmer.1 In spite of these complaints, and in spite of the myriad alter-
native programming languages offered in their place, most industrial and commercial program-
ming is still performed with imperative programming languages. There are many reasons why
imperative languages have not been swept aside, in spite of the obvious validity of many of the
claims made by their critics. Although Backus, for example, argues against features of a program-
ming language that tie it to a particular kind of machine architecture, this binding in fact can be
advantageous in many situations, and is especially important for producing efficient executable
code. A less commonly proposed defence, but nevertheless important one, is the fact that the idea
of state-transitions, a fundamental concept for imperative programming, is, in fact, a powerful and
useful problem solving paradigm.

On the other hand, it is clear that certain problems are much better solved using non-
imperative paradigms. By better solved, we mean that the solution is more clear, more readable,
more concise and that it more directly models the underlying problem. When considering the
design of a non-trivial software system, it is unlikely that all parts of the system will be amenable
to the use of same paradigm. This observation suggests that a reasonable approach to the develop-

1. A persuasive attack on imperative programming can be found in Backus’ ACM Turing Award lecture [2].

- 2 -

ment of software would be to develop the software using more than one paradigm. The question
to be answered then becomes how best to allow various paradigms to be mixed in a software sys-
tem. In this paper, we will describe a particular approach to multi-paradigm programming based
on programming language translation, and show how it can be applied in software development.
The case study we present is the development of a programming language compiler. A compiler
was chosen because the architecture of compilers is well understood.

2 BACKGROUND

Every programming language is based on a particular model of computation. In the case of an
assembly language, the model coincides very closely to the actual computational hardware. For
higher-level languages, the computational model is usually more abstract and a compiler is
needed to translate operations defined on the computational model into operations provided by the
hardware. The termprogramming paradigm is commonly used to refer to a computational model.

Table 1 lists some common programming paradigms and languages based on those para-
digms. The table corresponds to a list published in [19] except that we do not distinguish between
the imperative and procedural paradigms. According to [10], the list is incomplete. We should add
paradigms such as array-oriented, attribute-grammar, decision table, parallel processing, pattern
matching, and others. Several are discussed in [11]. Whether these are truly distinct paradigms is
a question that need not concern us here.

We are concerned with three major paradigms in this paper. These are the imperative,
functional and logic paradigms. Roughly speaking, the imperative paradigm is identified by the
use of variables, assignment statements and explicit flow of control. The functional paradigm can
be considered to be a subset of the imperative paradigm (supporting expressions but not state-
ments), but it achieves additional power by supporting higher-order objects (that is, it supports
expressions that denote functions). The logic paradigm is based on the idea of solving computa-
tional problems by specifying the properties of the solution using a suitable specification language
such as the predicate calculus.

3 APPROACHES TO MULTIPARADIGM PROGRAMMING

The programming paradigm that we use has a great impact on a programming task. It is not hard
to find examples of programs that can be expressed, after a few minutes thought, in a few lines of
code using one paradigm, yet the same program may require hours of tedious programming if

Table 1 Representative Programming Paradigms

Paradigm Language(s)

Imperative Fortran, Pascal, Algol60, C

Functional ML, Haskell

Relational SQL

Logic Prolog

Object-Oriented Smalltalk

- 3 -

another paradigm is used. It is simply common sense to choose the programming paradigm that is
most suitable for the task to be performed. But large computer applications or systems programs
normally require many different tasks to be performed, and we should not expect a single para-
digm to be suitable for all these tasks. For example, if we wish to construct an interactive alge-
braic system similar to Mathematica, say, we might prefer to use the functional paradigm for the
algebraic engine that implements symbolic equation manipulation and use the imperative para-
digm to handle keyboard input and screen output. But how can we use two or more different par-
adigms within the same program? We identify three main approaches.

1. Language extension using procedures. The conventional approach is to use an imperative
language for the implementation and augment it with collections of procedures that support the
desired paradigms. In the interests of software reusability, the procedures might be precom-
piled and made available as a load library. For example, the Berkeley Unix system provides a
library of C functions that supports database operations. Another example is a Prolog— Ada
system [17] that makes Prolog operations and datatypes available to Ada programmers. How-
ever, if the procedures have complicated interfaces or if calls to the procedures in the package
have hidden side-effects, there will be little net gain in programming productivity.

2. Multiparadigm languages. Several languages have been designed that support combinations
of paradigms. For example, C++ provides both the imperative and object-oriented paradigms.
Other languages exist that combine logic programming with imperative [4][20], parallel pro-
cessing with logic programming, relational with functional [18], to name just a few. Even if a
single language that supports the exact combination of paradigms needed for an application is
available, there may be reasons that make the language unsuitable. Lack of availability of com-
pilers for different computer systems, and poor execution efficiency are two possible reasons
not to use a particular language. Another reason is that, with the exception of C++, the lan-
guages are not in widespread use and it would be difficult to find experienced programmers. A
lack of support tools and support libraries would also lessen programmer productivity.

3. Separate processes or modules. The system is decomposed into modules, and each module is
programmed in a language that supports the most appropriate paradigm. One possibility for
linking the modules is to having modules in different languages executed as independent pro-
cesses [27]. They are synchronized by transfers of data between the modules. If the synchroni-
zation requirements and data transfers are sufficiently simple, however, the procedure call
mechanism augmented with code to convert the representations of parameters may suffice. An
interface description language like IDL [14] may be appropriate for ensuring the consistency of
interfaces programmed in the different languages. A Unix program constructed as two pro-
cesses linked by a pipe would be a simple example of this approach, assuming that the pro-
cesses are coded using different programming paradigms. The main drawback with the
approach is that data transfers between the modules may be inefficient, especially if the data
must be transformed from one representation to another. Furthermore, compartmentalizing the
different languages into separate modules does not necessarily eliminate harmful interactions.
A long list of interactions and problems that may occur when combining code in two program-
ming languages based on the same paradigm is given in [7]. We can reasonably expect the situ-
ation to be even worse when the paradigms differ.

The first two approaches might be described astightly-coupled in the sense that objects
and operations belonging to one paradigm are freely accessible from code based on the other par-

- 4 -

adigm. The third approach is loosely-coupled in the sense that the two paradigms are kept strictly
segregated and interaction is restricted to some specific interfaces that may be tied to a particular
language mechanism (such as a procedure call).

Another way to view the situation is as a spectrum of possibilities, ranged according to the
level of paradigm integration. At one extreme we have special-purpose multi-paradigm lan-
guages, where features from the different paradigms may be combined in the code at a low level.
For example, an assignment statement (a basic feature of the imperative paradigm) might be
backtrackable (a concept of the logic programming paradigm). At the other end of the spectrum,
we have the separate process approach where the paradigms are combined at a very coarse level.
Procedure level integration belongs somewhere in the middle.

Undoubtedly, there are situations where one of the three approaches represents the ideal
method for constructing a software system. We feel, however, that there is a need for a fourth
mechanism for supporting multiparadigm programming. This new method, that we call translator-
based multiparadigm programming is described in the following sections of the paper. It would be
inserted in our spectrum of possibilities as follows.

4 TRANSLATOR-BASED MULTIPARADIGM PROGRAMMING

4.1 Requirements

Consider two arbitrary languages named A and B that are based on different paradigms, and sup-
pose that we have a translator to convert A code into functionally equivalent B code. It should be
self-evident that the translator would make it possible to combine user-supplied A code with user-
supplied B code. Whether it would be easy or worthwhile to combine the code is a question that
we will now consider in general terms. There are several observations that we can make.

1. If the translation from A to B is high-level, in the sense that the objects and operations in the A
code are identifiable in the translated code, it should be relatively easy for user-supplied B code
to access these objects and operations directly.

2. If B supports abstract data types and type encapsulation, the implementations in B of the
objects and operations of the A language can be safely mixed with user-supplied B code.

3. If B supports operator overloading and/or syntactic extensibility, it may be possible to provide
access to facilities of the A language from a B program using syntax that is similar to the syn-
tax of the A language.

4. Access to facilities of the B language from within A language code can be provided by external
interface mechanisms built into the A to B translator.

Process-level Procedure-level Special-purpose
Language

Translator-
Based

- 5 -

5. If B is a systems implementation language (such as C), there is a reasonable expectation that
the translated A code will execute efficiently.

6. An application programmed as a mix of A modules and B modules is as portable as an applica-
tion programmed entirely in B.

To amplify these points further, let us take the particular example of a translator from Pro-
log to C. (Several such translators exist, including [1], [3] and [25].) Point 1 suggests that if the
Prolog code contains a predicate namedappend/3,2 for example, then the generated C code
should contain an object, perhaps a function, whose name isappend3 or similar, and which may
be invoked in a similar manner to a Prolog predicate. Point 2 suggests that the user of anappend3
object in the C code should not have access to the internal implementation ofappend3. Such type
safety is automatic ifappend3 is implemented as a function in C but impossible to guarantee if the
object is implemented as a data structure. Point 3 does not apply to the C language but it would
partially apply to C++ where existing operators of the language can be given overloaded mean-
ings. Even better would be a target language like Ada where entirely new operators can be defined
(this is a form of syntactic extensibility). Point 4 mentions a feature that forms part of many com-
pilers. Many current Prolog compilers and interpreters allow a Prolog predicate to call an external
function coded in C (usually treating it as a deterministic predicate). There is no reason why a
similar mechanism cannot be supported in an arbitrary A to B translator. Points 5 and 6 account
for why C has been popular as a target language for translators. If efficiency and portability were
not such large concerns, we would advocate a more flexible language likeScheme [21] as being a
good target.

Which language is the most suitable target language for a translator? The C language has
been widely used in existing translators because of its relative efficiency and high degree of port-
ability (points 5 and 6, above). But C is not ideal when one considers some of the other points. It
has no syntactic or semantic extensibility features, other than some rudimentary capabilities pro-
vided by the preprocessor. It does not have proper support for abstract data types and encapsula-
tion.

Although it also is not ideal, we propose C++ as being a more suitable target language.
C++ is a superset of C, often implemented by means of a translator from C++ to C. It, therefore,
retains most of the efficiency and portability advantages of C. C++ is now available on almost all
systems. In addition, C++ provides some semantic extensibility because it allows overloaded
meanings to be provided for operators in the language. With itsclass construct, C++ provides a
method of creating abstract data types and for encapsulating implementations of the abstract data
types and their operations. It would be preferable if C++ also provided syntactic extensibility and
provided automatic garbage collection, but these are not overwhelming deficiencies.

To demonstrate that translation provides a suitable support framework for multiparadigm
programming, it is necessary to provide examples. The following section of the paper describes a

2. In Prolog, a predicate namedappend with two arguments is distinct from a predicate namedappend with three
arguments. It is conventional to suffix the predicate name with a notation like ‘/3’ to indicate the arity of the predicate
and thus unambiguously define which predicate is being referred to.

- 6 -

small compiler project where four different paradigms are used. If additional translators had been
available, we might have chosen to use even more paradigms to get the job done.

4.2 Translating Prolog to C++

The TOPIC Prolog to C++ translator [16] is, we believe, the first translator that has been specifi-
cally designed with multiparadigm programming as an objective. It allows user-supplied C++
code to manipulate and use Prolog concepts such as queries, predicates, terms and unification in a
natural and type-safe manner. For example, if the Prolog predicatesmammal/1 andswims/1 have
been translated into C++ by the TOPIC translator, here is some hand-written C++ code that
invokes these predicates.

Term *X = Variable;
Query Q = mammal1(X) & swims1(X);
Goal G(Q);

/* print all solutions to the query
:- mammal(X), swims(X).

*/
while(G.Next())

cout << "X = " << G.Value(X) << "\n";

In this sample code, the object Q represents the Prolog query, and the object G represents an envi-
ronment for invocation of that query. G holds bindings for all variables used in the query and
holds state information needed to implement backtracking within the query. The methodNext
associated with a query causes the next solution to the query to be sought, and a true/false result
indicates the success of the search. TheValue method is used to look up a binding for a variable.
Note that the readability of the C++ code is enhanced with use of operator overloading. The ‘&’
operator is overloaded so that it can be used for conjunction of subqueries. (Similarly the ‘| ’
operator has an overloaded meaning of disjunction.) The ‘<<’ operator, already overloaded in
C++ to provide output of simple datatypes, is further overloaded to provide output of Prolog
terms.

While people may argue over details of the C++ design used to implement the concepts of
Prolog, the objective of making it relatively easy to integrate C++ code with Prolog code has been
achieved. Our earlier arguments that the object-oriented features of C++ make it easier to develop
a natural translation strategy have, we feel, been borne out in practice. In the next section, we will
illustrate the use of the TOPIC translator.

If the logic programming paradigm can be integrated with the O-O and imperative para-
digms of C++ this simply, it should be possible to treat other paradigms similarly. While we only
have one fully implemented example of the approach and two partial examples (lex and yacc), we
believe that the prospects of finding suitable C++ descriptions for concepts belonging to other
paradigms are good. As some further justification, the following subsection gives an outline of a
translation scheme for the functional paradigm.

- 7 -

4.3 Translating Functional Languages to C++

The functional paradigm is a significant paradigm that is the focus of much research. Inefficient
implementations and the limited success of hardware solutions to the efficiency questions ham-
pered past acceptance of functional programming languages. Recently, however, there has been a
significant improvement in functional implementation efficiency, using both graph-reduction
techniques and super-combinators (see, for example, [8]).

Two aspects of modern functional programming languages form the key distinction with
the imperative paradigm. All objects (values and functions) are “equal citizens” and evaluation is
lazy (arguments are not computed until the value is needed: it is sometimes called “call-by-
need”). Efficient implementation of lazy evaluation is still the subject of ongoing research (see,
for example, the discussion by Wray and Fairburn in [26]), and it is not our intention to claim that
the translator based approach holds the solution to that problem. Rather, we wish to present a way
in which the translation can be performed, achieving both equal-citizenship for higher-order func-
tions and laziness. It is likely that implementation techniques, such as those of Wray and Fairburn,
could be adapted to work with the translator-based approach presented here.

To simplify our discussion, we will useλ as an abstraction operation, and the notation [x]e
to represent the bound variable and body of a lambda expression. Thus the traditional expression

λx.x+1

for example, would be represented in this notation as

λ([x](x+1)).

The advantage of this notation is that it allows us to denote nullary functions, as in

λ([] (3+4)).

Also note that the lambda calculus notation(f x) denotes the application of a function namedf to
an argumentx. It corresponds to the more usual mathematical notationf(x).

Consider, then, the functionf defined as

f = λ([x] λ([y](x + y)))

In most functional languages,f would be a first-class object that may be passed as a parameter to
other functions. It may also be partially applied, so that, for example, f(3) represents a new func-
tion that takes just one argument (and has the effect of returning the value of its argument plus 3
as its result). In keeping with the translation strategy used for Prolog, we have devised a possible
translation scheme for lambda expressions. The idea is to mapf into three different C++ classes,
as follows.

class f2 represents f with two unbound arguments
class f1 represents f with one unbound argument
class f0 represents f with zero unbound arguments

The inheritance hierarchy is arranged so thatf0 is a subclass off1 andf1 is a subclass off2. Thef1
class has all the members off2 plus an extra (presumably private) member which contains the

- 8 -

value of the bound argument. Similarly forf0 versusf1. Each of these classes contains a member
namedapply. So, ifaddfn represents an instance of classf2, then

addfn.apply(3) returns an instance of classf1, representing the function
λ([y] (3+y))

Similarly, if add3fn represents the class instance created with the previous example, then

add3fn.apply(4) returns an instance of classf0, representing the function
λ([](3+4))

Our proposed scheme uses the lazy evaluation approach, as mentioned above. Therefore, to obtain
the fully evaluated result of 7 from thef0 class instance, we would call itseval method. Each of
the classes has aneval method, but only in the case of thef0 class would that method return an
integer result.

All classes created from lambda expressions share a common ancestor, namedClosure
which thus forms the root of the class hierarchy. There is no difficulty in representing lambda
expressions such as

λ([f](λ([x](f x)))) λ([z] z)

that return functions (class instances) as their results. In lambda calculus, this expression reduces
to λ([x](λ([z] z) x)). Suppose that the sub-expressionλ([f](λ([x](f x)))) is translated to the three
classesE0, E1 andE2. They form a hierarchy withE0 a sub-class ofE1, E1 a sub-class ofE2 and
E2 a sub-class ofClosure. Also, suppose that the other sub-expression, namelyλ([z] z), is trans-
lated to a class hierarchy containingF0 andF1. Instances of either expression can be created by
using C++ declarations. For example

E2 e;

creates an instance of the first sub-expression. To apply such an object to a single value requires
use of the apply method, as in

e.apply(t)

where t is a Closure instance.

The C++ code to evaluate the complete lambda expression is:

E2 e;
F1 f;
Closure *result;
result = e.apply(f);

The implementation of a translator based on this strategy has been described in [23].

4.4 Existing Translator-based Tools

Two successful Unix tools use an approach to mixing paradigms based on translation. They are
lex[15] andyacc[13].

- 9 -

Conventionally, a computational model based on a finite state automaton (FSA) is adopted
for the lexical analysis phase of a compiler. While a FSA is not a universal computing machine
equivalent in power to a Turing machine, there is no reason why it should not be useful as a com-
putational model in a restricted domain. It is also conventional to define a FSA using regular
expressions. Regular expression notation may be viewed as a declarative language. The standard
Unix tool that supports a regular expression language for defining a FSA islex. The lex tool
comes close to being a translator for supporting multiparadigm programming. It works by trans-
lating the regular expressions into a FSA implemented as a C program. It further permits user-
supplied C code to be wedded to the FSA execution. The translation scheme is not as high-level
as it might be, since C code can only be invoked after a pattern has matched. However, lex does
exemplify our approach well.

Similarly, the syntactic recognition phase of a compiler is conventionally based on a push-
down automaton (PDA) computational model. The language used to define the execution of the
PDA is normally BNF (or similar). BNF may also be viewed as a declarative language. The stan-
dard Unix tool that supports a BNF-like language isyacc. It too works by translating the input
notation into C code, and allows user-supplied C code to be combined with the execution of the
PDA.

5 A DEMONSTRATION SYSTEM: A COMPILER

5.1 Selection of Suitable Paradigms

The conventional structure for a (non-optimizing) compiler is shown in Figure 1. Each phase of
the compiler represents a well defined task, and it is reasonable to choose an appropriate program-
ming paradigm for the implementation of each one. Tools like lex and yacc have proven their util-
ity for creating the first two phases of a compiler. We briefly review the paradigms that should
prove useful for the remaining phases.

The semantic analysis phase involves type checking and enforcing other semantic restric-
tions of the language being compiled. Some work preparatory to code generation, such as allocat-
ing storage addresses to variables, may also be performed. A possible paradigm that might be
used for specifying semantic analysis could be a declarative paradigm based on attribute gram-
mars. Many attribute grammar evaluator systems exist, though there is no standard one in the
same sense that lex and yacc have become standard in their particular environments. An attribute
grammar does not necessarily provide the most convenient paradigm to use when building a com-
piler, even for a simple language. A telling comparison appears in [22], where the same compiler
is specified using two different attribute grammar systems and using a logic programming system
namedGentle. In terms of brevity and clarity, the Gentle specification is a clear winner. Certainly,
the logic programming paradigm is adequate for specifying type checking rules and has previ-
ously been used as the basis of an automatic type checker generator [6]. The imperative paradigm
is better suited for other work, such as entering and looking up identifiers in a symbol table, and
allocating storage addresses to variables.

- 10 -

No clear choice of paradigm exists for describing the code generation phase of a compiler
either. Perhaps a decision table paradigm might be used for instruction selection, but it would not
be appropriate for all applications and no widely available support tool exists. For a reasonably
conventional computer architecture, the instruction selection component of the code generation
phase is easily described using logic programming rules. Other aspects of code generation, such
as register allocation and emission of assembly language instructions, may be implemented using
an imperative paradigm.

5.2 A Tour of the Implementation

We have chosen a simple imperative programming language, almost identical to the language
used by Warren [24] for our demonstration system. We have added an additional datatype (set of
integer) to make the type checking rules more interesting. The language is similar to Wirth’s PL/0
language. Alternatively, it may be viewed as a subset of Pascal.

The lexical analysis and syntactic analysis phases form the compiler’s front-end. The
front-end builds an abstract syntax tree (AST) to represent the input program, and this AST is tra-
versed by the semantic analysis and code generation phases. As stated above, we are using a logic
programming paradigm to implement most of the semantic analysis and code generation phases.
Consequently, most of the work of these phases is expressed in the Prolog language. The obvious
way of representing the AST is therefore as a Prolog term. Figure 2 shows the correspondence
between a trivial input program, its AST and the equivalent Prolog term. Several unbound vari-
ables (T1, T2 ...) are included in the Prolog term. These represent the datatypes of the subexpres-
sions they appear in. The type checking rules of the semantic analysis phase subsequently bind
the variables to appropriate datatypes.

Figure 1 Phases & Possible Paradigms for a Compiler

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

Code
Generation

Regular Expressions,
Imperative

BNF,
Imperative

Logic Programming,
Imperative

Logic Programming,
Imperative

- 11 -

Lexical Analysis

The notation supported by lex allows C code to be attached to regular expressions. For example,
the following lex rule is used for matching both identifiers and keywords of the demonstration
language.

{Letter} {Letter_or_Digit}* { return kwd_lookup(yytext); }

The first part of the rule is a regular expression that matches a single letter followed by zero or
more occurrences of a letter or digit. (It uses previous definitions forLetter andLetter_or_Digit.)
The second part of the rule is composed of arbitrary C code. In this case, we provide a single C
statement that calls a separate C function to look up the matched text in a table of keywords. If the
text occurs in the table, the function returns an integer code for the keyword, otherwise it returns
an integer code that represents theIdentifier lexical element of the language. Thereturn state-
ment causes that integer code to be passed back as the result of the lexical analyzer function.

The ability to combine the pattern matching power of the FSA paradigm with the impera-
tive paradigm of C code is sufficiently powerful that some sophisticated programs can be built.
Typical applications for this combination are tools for converting files from one text formatting
system to another, scanning English text files, reformatting assembler files, etc.

Lex is relatively old, predating the idea of multiparadigm programming. It is not surpris-
ing that the FSA and imperative paradigms are not perfectly integrated. A redesigned version of

Figure 2 A Sample Program: its AST and Prolog Representations

PROGRAM m
INT n;
BEGIN

n := 10;
WHILE n > 0 DO

n := n - 1
END

program(stmnt(assign(id(n,T1),integer(10)),
 while(condop(greater,T2,id(n,T3),integer(0)),
 assign(id(n,T4),op(minus,T5,id(n,T6),integer(1))))))

program

stmnt

assign

whileid integer

condop
assign

greater id integer

id op

minus id integer

n 10

0
1n

n

n

- 12 -

lex that integrated the two paradigms more closely would probably provide regular expressions as
objects that could be manipulated and used from within C or C++ code.

Syntactic Analysis

BNF notation is generally used for describing syntactically legal patterns of lexical elements in a
programming language. When a bottom-up parsing technique like one of the LR methods is used
to implement parsing, the underlying computational model is that of a deterministic pushdown
automaton. However, we might equally well adopt a more general view that the computational
paradigm is pattern matching. The standard Unix tool that uses BNF notation to generate a recog-
nizer is yacc. It is used in a similar way to lex, in that arbitrary C statements may be attached to
patterns, written as BNF rules.

In our demonstration compiler, we attach C++ statements to the rules. (Using C++ instead
of C causes no difficulties, given the close relationship between the two languages.) The C++
statements are mainly concerned with construction of the Prolog term corresponding to the
abstract syntax tree. A sample pair of BNF rules and their associated C++ code are as follows.

Expr: number
 { $$ = new Struct("integer", 1, new Integer($1)); };

Expr: Expr '+' Expr
 { $$ = new Struct("op", 4, new Atom("plus"),

new Variable, $1, $3); };

The first rule specifies that an expression, denoted byExpr, can consist of just a number. When
this case occurs, the associated C++ code causes a new object to be created. The object is, in fact,
the C++ implementation of the Prolog term that represents an AST subtree for the expression. The
term has a functor name ofinteger, and the functor has one argument which is another term – the
C++ implementation of a Prolog integer. The second rule specifies that an expression can be com-
posed of two subexpressions separated by an addition operator. In that case, we again construct an
AST subtree. The new subtree is represented by a Prolog term with the functor nameop. Two of
the functor arguments are Prolog terms for the operands of the addition. Two other arguments
specify the operation name,plus, as a Prolog atom and provide an anonymous unbound variable
to represent the type of the expression.

As with lex, the marriage of BNF notation with the imperative paradigm is not as general
as it could, or should, be. The design of yacc was, however, remarkably successful for its time.

- 13 -

Semantic Analysis

As stated above, the type checking rules of a typical programming language are usually easy to
express as logic programming rules. For example, the rules for checking two of the statement
types in the demonstration compiler are as follows.

% Check an if statement. The test expression must have bool type
% and the 'then' clause must also satisfy the type checking rules.
typeCheck(if(C,S)) :- typeOf(C,bool), typeCheck(S).

% Check an assignment statement. In this language, the source and
% target of the assignment must have the same datatype.
typeCheck(assign(Id,E)) :- typeOf(Id,T), typeOf(E,T).

where a different Prolog predicate,typeOf, is invoked for type checking expressions. Some of the
rules definingtypeOf are as follows.

typeOf(id(_,T), T).
typeOf(integer(_), int).
typeOf(op(plus,int,L,R), int) :- typeOf(L,int), typeOf(R,int).
typeOf(op(minus,int,L,R), int) :- typeOf(L,int), typeOf(R,int).
% similar rules for other operator/type
% combinations are omitted

...
typeOf(E,T) :- write('Type Mismatch'), nl.

More sophisticated rules are required for defining the type systems of languages that per-
mit overloading of operators and support automatic type coercions. If the rules become too com-
plicated, a different paradigm, such as that of attribute grammars, may be more appropriate.

The type checking rules, above, assume that every use of an identifier has been associated
with the type that was previously declared for that identifier in the program. Compilers, therefore,
typically include a symbol table where identifiers and their types are entered when processing a
declaration. A look-up operation on the symbol table returns the type associated with a given
identifier. Additional operations are provided for handling languages that have block-structured
scope rules.

Although it is not difficult to implement a symbol table in Prolog (as Warren did [24]), it is
more appropriate to use the imperative paradigm. This enables an efficient implementation of
identifier look-up, such as hashing, to be used and it suits the usual state-oriented nature of a sym-
bol table better. We can view the action of entering an identifier in the table as an operation that
changes its state. Similarly, the action of exiting a scope block causes identifiers declared in that
scope to be removed from the table. We therefore implemented the symbol table in C++, invoking
the symbol table operations from within Prolog code.

Code Generation and Peephole Optimization

It is very natural to try to express code-generation patterns in some kind of specification language
which is then used as to input to a code-generator generator. We argue that Prolog is a good choice
for this specification language. Certainly, the code generation patterns for a conventional target

- 14 -

computer turn out to be very easy to express as logic programming rules. Furthermore, most stan-
dard peephole optimizations can be described using additional rules. Simple Prolog implementa-
tions for both code generation and peephole optimization are given in [5]. A less direct approach
for code generation has been described by Ganapathi [9]. He gives a two-phase technique which
has the advantage of allowing the code generation rules to be given independently of the AST for-
mat. Some sample Prolog rules that might be used to define translation of the integer addition
operation into Motorola 68000 assembly language are shown in Figure 3. Separate driver code,
also written in Prolog, is used to traverse the AST. It is responsible for register allocation and for
passing components of the tree, one node at a time, to the rules given in Figure 3.

6 CONCLUSIONS

The compiler implementation described in Section 3 illustrates two things. First, that the multi-
paradigm approach based on translation can be used in a natural way. Second, that the approach
has already been in use, in a limited way, using the lex and yacc tools for nearly 20 years. If lex
and yacc had been recognized for what they are, some effort might have been expended on
improving the structure of the C code generated by these tools. With a different design and, per-
haps, a different choice of target language, it would be easier to use the BNF and regular expres-
sion notations within any program (not just in a compiler).

We have proposed a new methodology for multiparadigm programming. While a closer integra-
tion of two or more paradigms is achievable by designing new programming languages, there is a
limit to how many combinations can be reasonably supported or used within a project. Another
alternative of implementing different modules using different paradigms and linking the modules
using message passing techniques permits many different paradigms to be used together, but
achieves a relatively small degree of integration. We think that our approach, based on inter-lan-
guage translation, achieves a much better compromise between ease of use and degree of integra-
tion than either of the other approaches.

Our experience with the compiler application and with other modest applications con-
vinces us that the translator-based approach to software development is productive. It would be

Figure 3 Sample Prolog Rules for 68000 Code Generation

% addition of zero is optimized away
code(+(T,0), T).

% use special instructions for addition of small constants
code(+(T,N), T) :- integer(N), N>0, N=<8, emit(addql,N,T).
code(+(T,N), T) :- integer(N), M is -N, M>0, M=<8, emit(addql,M,T).

% perform an in-place addition if the result can be held in the same
% register as the left operand
code(+(T,N), T) :- emit(addl,N,T).

% handle the general case
code(+(T1,T2), R) :- emit(movl,T1,R), code(+(R,T2),R).

- 15 -

desirable to evaluate the method in the development of a large-scale software system. We also
need to develop translators for more paradigms. Work on a functional to imperative paradigm is
continuing, while other translators are contemplated.

ACKNOWLEDGEMENTS

We are indebted to Michael Junkin for implementing the TOPIC system.

We gratefully acknowledge financial support for this project from IBM Canada Ltd., and the Nat-
ural Sciences and Engineering Research Council of Canada.

REFERENCES

[1] B. Arbab, “C-Log: A Source Level Translator from Prolog to C.” Unpublished manuscript,
IBM, Santa Monica, CA (1990).

[2] J. Backus, “Can Programming be Liberated from the von Neumann Style? A Functional
Style and its Algebra of Programs.” Comm. ACM 21, 8 (August 1978), pp. 613-641.

[3] J. L. Boyd and G. M. Karam, “Prolog in C.” Technical Report, Carleton University, Ottawa
(March 1988).

[4] T. A. Budd, “Blending Imperative and Relational Programming.” IEEE Software 8, 1 (Jan
1991), pp. 58-65.

[5] J. Cohen and T. J. Hickey, “Parsing and Compiling Using Prolog.” ACM Trans. on Prog.
Lang. and Sys. 9, 2 (April 1987), pp. 125-163.

[6] T. Despeyroux, “Executable Specifications of Static Semantics” inSemantics of Data Types,
G. Kahn, D.B. MacQueen and G. Plotkin (Eds.), Lecture Notes in Computer Science vol.
173, Springer-Verlag (1984), pp. 215-233.

[7] B. Einarsson and W. M. Gentleman, “Mixed Language Programming.” Software – Practice &
Experience 14 (April 1984), pp. 383-395.

[8] J. Fairburn and S.C. Wray, “Code Generation Techniques for Functional Languages.” Proc.
of ACM Conf. on Lisp and Functional Programming (1986),pp. 95-104.

[9] M. Ganapathi, “Prolog Based Retargetable Code Generation.” Computer Languages 14, 3
(1989), pp. 193-204.

[10] B. Hailpern, “Multiparadigm Languages and Environments.” IEEE Software 3, 1 (Jan. 1986),
pp. 6-9.

[11] B. Hailpern (ed.), Special issue on Multiparadigm Languages and Environments. IEEE
Software 3, 1 (Jan. 1986), pp. 6-77.

[12] R. Hayes and R. D. Schlichting, “Facilitating Mixed Language Programming in Distributed
Systems.” IEEE Trans. on Software Eng. SE-13, 12 (Dec. 1987), pp. 1254-1264.

- 16 -

[13] S. C. Johnson, “Yacc – Yet Another Compiler Compiler.” C.S. Tech. Report 32, Bell Tele-
phone Laboratories (1975).

[14] D. A. Lamb, “IDL: Sharing Intermediate Representations.” ACM Trans. on Prog. Lang. &
Systems 9, 3 (July 1987), pp. 297-318.

[15] M. E. Lesk & E. Schmidt, “Lex – A Lexical Analyzer Generator” inUNIX Programmer’s
Manual 2, AT&T Bell Laboratories (1975).

[16] M. R. Levy, R. N. Horspool, and M. Junkin, “The Translation of Prolog into C++.” Unpub-
lished internal report, Univ. of Victoria, (Dec. 1990).

[17] N. Madhav, “An Ada—Prolog System.” Tech. Report CSL-TR-90-437, Stanford Computer
Systems Laboratory (Aug. 1990).

[18] Y. Malachi, Z. Manna & R. Waldinger, “TABLOG – A New Approach to Logic Program-
ming” in Logic Programming: Relations, Functions and Equations, D. DeGroot and G.
Lindstrom (Eds.), Prentice-Hall, 1985.

[19] J. Placer, “Multiparadigm Research: A New Direction in Language Design.” SIGPLAN
Notices 26, 3 (March 1991), pp. 9-17.

[20] A. Radensky, “Toward Integration of the Imperative and Logic Programming Paradigms:
Horn-Clause Programming in the Pascal Environment.” ACM SIGPLAN Notices 25, 2 (Feb.
1990), pp. 25-34.

[21] G. L. Steele Jr. and G. J. Sussman, “Scheme: An Interpreter for the Extended Lambda Calcu-
lus.” Memo 349, MIT Artificial Intelligence Laboratory (1975).

[22] W. M. Waite, J. Grosch & F.-W. Schröer, “Three Compiler Specifications.” Tech. Report
166, GMD, Karlsruhe (Aug. 1989).

[23] X. Wang, “Compiling Functional Programming Languages Using Class Hierarchies.” M.Sc.
Thesis, Dept. of Comp. Science, Univ. of Victoria (1992).

[24] D. H. D. Warren, “Logic Programming and Compiler Writing.” Software – Practice &
Experience 10 (1980), pp. 97-125.

[25] J. L. Weiner and S. Ramakrishnan, “A Piggy-Back Compiler for Prolog.” Proc. of SIGPLAN
‘88 Conf. on Prog. Lang. Design and Implementation, Atlanta (June 1988), pp. 288-296.

[26] S. C. Wray and J. Fairburn, “Non-Strict Languages – Programming and Implementation.”
Computer Journal, 32, 2 (1989), pp. 142-151.

[27] P. Zave, “A Compositional Approach to Multiparadigm Programming.” IEEE Software
(Sept. 1989), pp. 15-25.

