

A Faster Earley Parser

Philippe McLean & R. Nigel Horspool

Dept. of Computer Science, University of Victoria
Victoria, BC, Canada V8W 3P6

E-mail:

pmclean@csc.uvic.ca

,

nigelh@csc.uvic.ca

Abstract.

We present a parsing technique which is a hybrid of Earley’s
method and the LR(k) methods. The new method retains the ability of
Earley’s method to parse using arbitrary context-free grammars. How-
ever, by using precomputed LR(k) sets of items, we obtain much faster
recognition speeds while also reducing memory requirements.

1 Introduction

The parsing method invented by Earley [2,4] is a highly practical parsing technique for
general context-free grammars (CFGs). If

n

 is the length of the input to be recognized,
the parser requires time proportional to

n

3

 to recognize arbitrary context-free lan-
guages,

n

2

 for unambiguous languages, and

n

 for a large class of languages.
The amount of processing performed while recognizing an input string is large

compared to table-driven techniques such as the LR parser family, which includes the
LR(0), SLR(1), LALR(1) and LR(1) methods. These LR methods, however, cannot
accept arbitrary CFGs. They are limited to subsets of unambiguous grammars. In gen-
eral, the LR parsing table constructed for an arbitrary CFG will contain conflicts. That
is, one or more states will provide a choice of actions to perform for some inputs.

A parsing method due to Tomita [6,4] overcomes the limitations of the LR meth-
ods. It uses LR tables that may contain conflicts. Whenever the parser encounters a
choice of parsing actions, it in effect clones new copies of itself to track each of the
conflicting actions simultaneously. Some copies of the parser may subsequently reach
a state where parsing cannot proceed (i.e. the input symbol is invalid for that state) and
these copies of the parsers simply terminate execution. In practice, the Tomita parser
simulates parallel execution of multiple copies of a LR parser, and it uses a DAG data
structure to reduce the storage needed by all the parse stacks. A Tomita parser is partic-
ularly efficient when few conflicts are encountered in the LR states.

If all we need to do is recognize the input, a Tomita parser would likely be the
method of choice. However, we will usually wish to execute semantic actions while
precisely

one

 of the parses is being performed. This is not so easy for a Tomita parser
because many parses are being performed in parallel. One possible solution is for each
copy of the LR parser to construct a parse tree. At the end of the input, we can traverse
one of these parse trees to perform the desired semantic actions. We consider that the

Thi d t t d ith F M k 4 0 4

computational work of building the parse trees negates the advantage of Tomita’s
method.

The Earley parser builds a data structure, a threaded sequence of states, which rep-
resents all possible parses of the input. After the input has been processed, it is
straightforward to traverse the sequence of states to build a parse tree for one possible
parse of the input, or to execute semantic actions for just the one parse.

We have developed a variation on Earley’s method which, like Tomita’s method,
uses LR parse tables for efficiency, while retaining the advantage of permitting seman-
tic actions to be easily associated with the grammar. The LR tables, in effect, capture
precomputations of all the run-time actions performed by an Earley parser. Our parsing
method, which we call LRE(

k

), uses information from the LR tables and therefore
avoids recomputing this information at run-time. The name LRE(

k

) reflects the fact
that our method can be viewed as a combination of LR(

k

) parsing with Earley parsing.

2 Terminology and Notation

2.1 Context-Free Grammars

A context free grammar

G

 is a four-tuple

k

V

T

, V

N

, P, Start

 l

where

V

T

 is a set of termi-
nal symbols,

V

N

 is a set of nonterminal symbols,

V

N

∩

V

T

 =

∅

,

P

 is a set of produc-
tions, and

Start

∈

V

N

 is the start symbol or goal symbol of the grammar. The
vocabulary

V

 =

V

N

∪

V

T

.
An augmented grammar

G

′

 is formed from G by adding a special goal rule

G

′

 =

k

V

T

∪

 {

¢

 },

V

N

∪

 {

S

′

 },

P

∪

 {

Start

′

→

£

Start

¢

 },

Start

′

l

.
where the tokens

£

 and

¢

 are delimiters that represent the beginning and end of input.
Lower-case letters near the front of the alphabet (i.e.

a

,

b

,

c

 ...) represent elements
of

V

T

, upper-case letters near the front of the alphabet (i.e.

A

,

B

,

C

 ...) represent ele-
ments of

V

N

, and upper-case letters near the end of the alphabet (i.e.

X

,

Y

,

Z

) represent
elements of V. A superscript represents repetitions of a symbol, so that, for example,

a

3

represents the string

aaa

. Greek letters

α

,

β

, ... represent sequences of zero or more
vocabulary symbols.

2.2 LR(

k

) Recognizers

An

item

 is a production which contains a marker, written as a dot, to indicate how
much of the right-hand side (RHS) has been recognized. Associated with each item is a
string of

k

 symbols (

k

≥

 0). The string represents lookahead or right context for the pro-
duction. For example, if

k

 is 2, a possible item is [

A

→

a b

•

B c

,

dd

]. This item indi-
cates that we have matched the first two symbols on the right-hand side of the rule

A

→

 a b B c

. If the complete RHS is successfully matched, then the next two symbols in
the input should be

dd

 for this production to be valid in a parse of the input at this
point.

We use

S

 to denote the set of LR(

k

) sets of items for the augmented grammar G

′

 .
Each element of S corresponds to a state in the LR(

k

) recognizer for G

′

 . The recog-
nizer has an initial state

I

initial

 = { [

Start

′

→

•

£

Start

¢

,

¢

k

] }

∈

S

,
and it has an accept state

I

accept

 = { [

Start

′

→

£

Start

 ¢ • , ¢k] } ∈ S.
The transition function between the recognizer’s states is

goto : S × V → S ∪ {∅}
The function goto(I, x) is defined as the set of all items [A → α x • β, t1 ... tk] such
that [A → α • x β, t1 ... tk] ∈ I. If the set goto(I,x) is an empty set, the transition is ille-
gal. (I.e., the string x t1 ... tk cannot follow the symbols that have been accepted so far
in a syntactically valid input.)

The closure of an itemset I is defined as the least set J such that I ⊆ J, and
[A → α • B β, t1 ... tk] ∈ J implies that ∀η (η ∈ firstk(β, t1 ... tk)): { [B → • γ, η] |
B → γ ∈ P } ⊆ J.

The function firstk(β, γ) ≡def { prefixk(σ) | βγ ⇒ * σ, σ ∈ VT
* }, where prefixk(σ)

is the k-symbol prefix of σ.
The set of items for each state may be partitioned into kernel items and non-kernel

items. The former are those items which are not added to a state by closure, while the
latter (also called completion items) are those which are added to a state by closure.

3 Conventional Earley Recognizers

A conventional Earley recognizer has two inputs: a context-free grammar G and a
token string x1 x2 ... xn, and determines if the string may be derived by G. For simplic-
ity, lookahead will not be considered in this discussion (k = 0).

The recognizer constructs a sequence E1, E2..., En+1, of sets of tuples. Each tuple
has the form <i, p> where i is an item [A → α • β] and p is an integer referring to the
parent Earley set Ep where the tuple containing the item with the marker at the begin-
ning of the RHS was introduced. The k-th set is formed as a result of recognizing the
first k-1 input tokens.

Tuples in a state may be partitioned into active and predicted tuples. Active tuples
may be introduced in two ways: by a SCANNER operation, and by a COMPLETER
operation. The SCANNER operation introduces tuples from the previous state where
the marker appears before the current input token; the marker is advanced past that
token in the new item. This is the process of matching terminal tokens in a produc-
tion’s RHS, and corresponds to a shift operation in an LR parser. The COMPLETER
operation identifies each tuple where an item’s marker is at the end of a RHS, and
moves the marker past the LHS in items in the tuple’s parent state. This operation iden-
tifies the derivation of a non-terminal, in the recognition of some RHS; an LR parser
would perform a reduction in exactly this case.

The COMPLETER operation introduces new tuples for every item where the
marker appears before a non-terminal. This operation begins the recognition of possi-
ble derivations for a non-terminal; it is the closure of a set of items. Closure is per-
formed at parse time in a conventional Earley parser. However these closure items are
implicit in the LR(k) recognizer.

Earley’s doctoral dissertation [3] contains a proof of correctness for a conventional
Earley recognizer, and an analysis of its algorithmic complexity. Parse trees may be
enumerated for all derivations of the input string by examining the sets Ei, 1 ≤ i ≤ n+1.

The conventional recognizer affords a simple implementation. However, observa-
tion of the parser’s actions reveals that the parser spends much of its time introducing
new items during the completion operation. Many prediction items may not be used
during the parse. The computation of item-set closures, a grammar-dependent opera-
tion, is performed at parse time. It is natural to wonder whether the Earley items can be
grouped in a manner that exploits pre-computed properties of the grammar. Our solu-
tion is to group items into sets in exactly the same way as in the states of a determinis-
tic (and possibly inadequate) LR(k) finite-state automaton.

4 LRE – A Faster Earley Recognizer

The new parsing method is named LRE(k); this represents the hybrid nature of the
algorithm as a composition of the LR(k) and Earley parsing methods.

In the following description, we use x1 x2 ... xn to represent the input to the recog-
nizer. So that lookahead sets are properly defined, we assume that the input is termi-
nated by k end-of-file delimiters. I.e., xn+i = ¢, for 1 ≤ i ≤ k.

Our algorithm is based on a conventional Earley parser and its correct operation
may be established by comparing its actions to an Earley parser’s actions. A conven-
tional Earley parser uses items of the form [A → α • β, t1 ... tk, p], where A → α • β
is a marked production, t1 ... tk is the lookahead for the item, and p is a reference back
to the state where recognition of the rule A → α β commenced. Our algorithm takes
advantage of the fact that the first two components of the Earley item represent an item
in one or more states of the LR(k) recognizer. We therefore implement states in our
LRE parser in terms of states in the LR(k) recognizer. The advantages of our represen-
tation are (1) we can use the LR(k) recognizer’s tables to determine actions for the Ear-
ley parser, (2) the lookahead strings are not computed dynamically, and (3) the new
representation can be implemented in a manner which uses much less storage.

A state in our LRE recognizer will be called an Earley state, and will be written as
Em. State Em is reached after recognizing the token string x1 x2 ... xm-1. The state Em
is represented by a set of tuples { kI1, B1l, kI2, B2l, ... } where each Ii ∈ S is the number
of some state in the LR(k) recognizer and Bi is an organized collection of back-point-
ers to Earley states. In programming terms, each Bi could be implemented as an array
of lists of LRE state numbers, where elements in the array are in one-to-one correspon-
dence with items in LR(k) state Ii. In more formal terms, we can represent Bi as a list
of list of integers [[bi 1 1, bi 1 2, bi 1 3 ...], [bi 2 1, bi 2 2, ...], ... [bi n 1, bi n 2, ...]] where
each bi x y is an integer in the range 0 to k inclusive, and LR(k) state I has n items.

As an example, suppose that LRE state E3 has the following representation:
{ k17, [[1,2], [3], [3]] l, k23, [[2]] l }

This would mean that state E3 represents a mixture of the same items as found in the
LR(k) states numbered 17 and 23. State 17 must have three items (the length of the list
that completes the tuple with state number 17) – let us suppose that these items are:

A → A • B C α1

X → a A • D α2

A → • b α3

where we have written the lookahead strings as α1, α2 and α3 respectively. Similarly,
LR(k) state 23 must have just one item and let us suppose that this item is

C → a b • b β1

Now, our LRE state represents an Earley state which contains exactly these items:
{ k A → A • B C, α1, 1 l, k A → A • B C, α1, 2 l, k X → a A • D, α2, 3 l,
 k A → • b, α3, 3 l, k C → a b • b, β1, 2 l }

The first tuple in E3 represents two copies of the first item of LR state 17, where one
copy is associated with a pointer back to state 1 and the other with a pointer back to
state 2. And similarly for the other items in LR states 17 and 23.

Our parsing algorithm is based on Earley’s, but it has been modified to work with
the different state representation. It has two main functions named SCAN and REC-
OGNIZER.

Given a LRE state Es, the function SCAN(Es, X, t) constructs a new LRE state
which represents Earley items where the marker has been past the token X in all appli-
cable Earley items represented in set Es.

The procedure RECOGNIZER(x1, ..., xn, ..., xn+k) determines whether the token
string x1 ... xn is in the language generated by G. Note that each of the symbols xn+1,
xn+2 ... xn+k is the symbol ¢. These extra k symbols are needed to provide right context
for the final reductions in the parse. RECOGNIZER constructs a sequence of Earley
states, from which a set of valid parse trees may be enumerated. Code for the SCAN
function is shown in Figure 1, while code for the RECOGNIZER is given in Figure 2.

The code uses the data structures and tables explained below. The tables may be
created during the LR(k) parser construction algorithm.
• Each LRE state is represented by a set whose elements are structures with two

fields. One field is named State and holds a state number for the LR(k) recog-
nizer. The other field is named BackPtrs and is an array of lists of integers. An
element BackPtrs[i] holds the state numbers that should be associated with the
i-th item of LR(k) state with number State.

• The array NumberOfItems[i] gives the number of items in LR(k) state i.
• The array SHIFT[s,x] holds the shift actions for the LR(k) recognizer. If the

current LR(k) state is numbered s, then SHIFT[s,x] gives the number of the des-
tination state to shift on symbol x. If a valid shift action is not defined for symbol x,
SHIFT[s,x] holds -1.

• The array DestItemPosition[m,i] gives the correspondence between items
in one LR(k) state and those in another LR(k) state. In particular, if item i in the
LR(k) state numbered m is A → α • X β, then a shift on the symbol X will lead to a
unique destination LR(k) state that contains the item A → α X • β. The number
held in DestItemPosition[m,i] is the number of this item in the destination
state. If item i in state m does not have the specified form (i.e. the marker is at the
end of the right-hand side), we assume that DestItemPosition[m,i] holds
the value -1.

function SCAN(Es, X, t)

begin
result := ∅ ;
for origin := each tuple in Es do

begin
dest := Shift[origin.State,X];
if dest ≥ 0 then
begin

newTuple := < dest, emptyBackPtrArray >;
(* process kernel items of new state *)
for i := 1 to NumberOfItems[origin] do
begin

j := DestItemPosition[origin,i];
if j ≥ 0 then

newTuple.BackPtrs[j]:= origin.BackPtrs[i]
end;
(* process non-kernel items of new state *)
for j := 1 to NumberOfItems[dest] do
begin

if newTuple.BackPtrs[j] = empty then
newTuple.BackPtrs[j] := [t]

end;
result := MERGE1(result, newTuple)

end
end;
return result

end SCAN;

(* MERGE1 is an auxiliary function called by SCAN *)
function MERGE1(L, T)
begin

for elem := each element of L do
if elem.State = T.State then
begin

for i := each index of elem.BackPtrs do
elem.BackPtrs[i] := elem.BackPtrs[i] ∪

T.BackPtrs[i];
return L;

end;
return L ∪ { T };

end MERGE1;

Fig. 1. The SCAN Function

function RECOGNIZER(x1 ... xn+k)

begin
E0 := { < Iinitial, [[0]] > };

E1 := SCAN(E0, £, 1);

for i = 1 to n do
begin

Ei+1 := SCAN(Ei, xi, i+1);

repeat
for LS := each element in Ei+1 do

begin
(* process reduce items *)
rs := ReduceItemList(LS.State, xi+1xi+2...xi+k);

for i := each element in rs do
begin

lhs := LeftHandSymbol[LS.State,i];
for j := each element in

LS.BackPtrs[i] do
Ei+1 := MERGE(Ei+1, SCAN(Ej,lhs,i+1));

end
end

until Ei+1 does not change;

if Ei+1 = ∅ then return failure;

end
if En+1 = { < Iaccept, [[0]] > } then

return success
else

return failure
end RECOGNIZER;

(* MERGE is an auxiliary function used above *)
function MERGE(E1, E2)
begin

result := E1;
for elem := each element in E2 do

result := MERGE1(result, elem);
 return result;
end MERGE;

Fig. 2. The RECOGNIZER Function

• The array ReduceItemList[m,α] is a list of the positions of all items in LR(k)
state m where the marker is at the end of the right-hand side and where the looka-
head string for these items is α.

• The array LeftHandSymbol[m,i] gives the symbol which appears on the left-
hand side of the i-th item in LR(k) state m.

5 An Example of Operation

To illustrate the operation of the LRE(k) parsing method, we use the ambiguous gram-
mar:

1. E → E + E
2. E → n

This grammar is augmented by the extra rule
0. S → £ E ¢

For simplicity, we choose k = 0. From this grammar, we can derive the LR(0) rec-
ognizer which has the states and actions shown below in Table 1. Each shift action is
preceded by the symbol which selects that shift action. Because a LR(0) parser does
not use lookahead, a reduce action is performed no matter what the next symbol is. The
word any represents the fact that any symbol selects the specified reduce action. The
table contains conflicts, in particular note that state 7 implicitly contains two different
actions for the case when the lookahead symbol is +.

Table 1: LR(0) Recognizer for the Example Grammar

State
Item
No.

Item Parse Actions

1 1 [S → • £ E ¢] £ Shift 2

2

1 [S → £ • E ¢]
E Shift 3
n Shift 4

2 [E → • E + E]

3 [E → • n]

3
1 [S → £ E • ¢] + Shift 6

¢ Shift 52 [E → E • + E]

4 1 [E → n •] any Reduce 2

5 1 [S → £ E ¢ •] any Reduce 0

6

1 [E → E + • E]
E Shift 7
n Shift 4

2 [E → • E + E]

3 [E → • n]

7
1 [E → E + E •] + Shift 6

any Reduce 12 [E → E • + E]

From that LR(0) table we derive the tables shown below in Figure 3. Only the signifi-
cant entries in the two rectangular arrays, DestItemPosition and
LeftHandSymbol are shown (the missing elements in these arrays should never be
accessed). Similarly, only the significant entries in the Shift array are shown; if any
other element is accessed the result should be -1.

We now trace the states of the LRE(0) parser on the input string n+n+n. The REC-
OGNIZER function begins by initializing the set E0 with the initial LRE state
{k 1,[0] l}. It represents item 1 of state 1 in the LR(0) recognizer – indicating that the
RHS of the rule S→ £ E ¢ is to be recognized.

Each numbered step in our trace corresponds to the processing of one input sym-
bol, and begins by showing the LRE state that is computed after seeing that input sym-
bol. An explanation of the state’s derivation is provided for the first few steps only.

=== The start of input symbol £ is processed ===

1. E1 = { k 2,[[0], [1], [1]] l }. RECOGNIZER called SCAN(E0, £, 1), which looked

State
Item
No.

DestItem
Position

LeftHand
Symbol

1 1 1 S

2 1 1 S

2 2 2 E

2 3 1 E

3 1 1 S

3 2 1 E

4 1 -1 E

5 1 -1 S

6 1 1 E

6 2 2 E

6 3 1 E

7 1 -1 E

7 2 1 E

State
Number
Of

Items

Reduce-
ItemList

1 1 []

2 3 []

3 2 []

4 1 [1]

5 1 [1]

6 3 []

7 2 [1]

State Symbol Shift

1 £ 2

2 E 3

2 n 4

3 + 6

3 ¢ 5

6 E 7

6 n 4

7 + 6

Fig. 3. Tables Used In Parser Example

up the action for LR(0) state 1 when the input is £. Thus it created the LRE item
k 2,[[], [], []] l and then it filled in the back pointers. The list [0] was copied from
the origin item, while the two lists containing [1] correspond to completion items.

=== The first input symbol n is now processed ===

2. E2 = { k 4, [[1]] l, k 3, [[0], [1]] l }. RECOGNIZER called SCAN(E1, n, 2). The
k 4, [[1]] l element is created because of the LR(0) action for state 2 when the
lookahead symbol is n. The other items are created by RECOGNIZER because
item 1 in LR(0) state 4 is a reduce item, and the reduce action is triggered by the
next input symbol which is +. The LHS symbol for that item is E, and RECOG-
NIZER called SCAN(E1, E, 1) to create the two extra items.

=== The second input symbol + is processed ===

3. E3 = { k 6, [[1], [3], [3]] l }.

=== The input symbol n is processed ===

4. E4 = { k 4, [[3]] l, k 7, [[1], [3]] l, k 3, [[0], [1]] l }.

=== The input symbol + is processed ===

5. E5 = { k 6, [[1,3], [5], [5]] l }.

=== The input symbol n is processed ===

6. E6 = { k 4, [[5]] l, k 7, [[1,3], [3,5]] l, k 3, [[0], [1]] l }.

=== The end-of-input symbol ¢ is processed ===

7. E7 = { k 5, [0] l }.

6 An Additional Enhancement

The algorithm presented above can be further improved. The implementation used in
our experiments does not immediately record non-kernel items in a LRE state (except
when handling productions with an empty RHS). Their processing is deferred until
scanning to the next state occurs. By recording the number of kernel items in each
LR(k) state, and by consulting the DestItemPosition table, it can be determined
whether or not a particular item in a destination state came from a kernel item in the
source state. If it did, the BackPtr list is copied from the previous state. If it did not,
the list [t-1] is supplied, where t is the number of the current LRE state.

The additional improvement achieves significant space and time savings, because
many predictions items in an Earley parser are fruitless

7 Experimental Results

Lookahead significantly affects the speed of an Earley parser. In general, it is used to
eliminate items from the sets of items maintained by the parser. Fewer items imply that
fewer fruitless parsing possibilities are explored. On the other hand, a conventional

Earley parser computes the lookahead contexts for items at run-time, and choosing a
large value for the lookahead k will waste execution time. In Figure 4, we compare the
speed of a conventional Earley parser and our LRE parsing method for k=0 and k=1.

Figure 4 already demonstrates that LRE(k) is a much faster parsing method than
the conventional Earley parsing method. In Figure 5, we show an additional compari-
son against a parser generated by the freely distributed parser generator bison [1].
(Other measurements, not displayed here, reveal that a parser generated by yacc [5]
yields very similar results.) Our grammar for these experiments was Roskind’s ANSI
C grammar. The grammar contains one ambiguity, namely the dangling else problem.
This ambiguity is automatically eliminated from the generated parser when yacc and
bison are used; it is retained by the Earley parsers.

For an unambiguous grammar (or when the ambiguities have been eliminated, such
as with the bison’s interpretation of the Roskind C grammar), recognition time is pro-
portional to the length of the input. For an ambiguous grammar, the recognition time
may increase as the cube of the length of the input. Figure 6 shows timing measure-
ments when parsing with the ambiguous grammar:

S → S S | a,

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000

T
i
m
e

(
u
+
s

s
e
c
)

String Length (tokens)

 Earley with k = 0
 Earley with k = 1

LRE with LR(0) states
LRE with LALR(1) states

Fig. 4. Effect of Lookahead on Parsing Speed

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000

T
i
m
e

(
u
+
s

s
e
c
)

String Length (tokens)

 Earley with k = 1
LRE with LALR(1) states

Bison

Fig. 5. Parser Speed for Roskind C Grammar

0

20

40

60

80

100

120

140

160

100 120 140 160 180 200 220 240 260

T
i
m
e

(
u
+
s

s
e
c
)

String Length (tokens)

 Earley with k = 1
LRE with LALR(1) states

Fig. 6. Parser Speed with an Ambiguous Grammar

8 Conclusions

We have modified Earley’s parsing method so that it can take advantage of precom-
puted LR(k) sets of items. The result is a hybrid parsing method, LRE(k), which can
still handle general context-free grammars but which is comparable in speed to a yacc-
generated or bison-generated parser. However, yacc and bison can, of course, only rec-
ognize unambiguous languages that are based on LALR(1) grammars with conflict
elimination in the generated parser. The LRE(k) parsing method is 10 to 15 times faster
than a conventional Earley parser, while requiring less than half the storage.

Acknowledgements

Funding for this research was provided by the Natural Sciences and Engineering
Research Council of Canada in the form of a summer fellowship for the first author
and a research grant for the second author. The initial motivation for working on this
problem is due to Gordon Cormack.

References

1. Donnelly, C., and Stallman, R. BISON: Reference Manual. Free Software Founda-
tion, Cambridge, MA, 1992 .

2. Earley, J. An Efficient Context-Free Parsing Algorithm. Comm. ACM 13, 2 (Feb.
1970), 94-102.

3. Earley, J. An Efficient Context-Free Parsing Algorithm. Ph.D. Thesis, Carnegie-
Mellon University, 1968.

4. Grune, D., and Jacob, C.J.H. Parsing Techniques: a practical guide. Ellis Hor-
wood, Chichester, 1990.

5. Johnson, S.C. YACC: Yet Another Compiler-Compiler. UNIX Programmer’s Sup-
plementary Documents, vol 1, 1986.

6. Tomita, M. Efficient Parsing for Natural Language. Kluwer Academic Publishers,
Boston, 1986.

