
Experience with Constructing Code Hunt Contests

R. Nigel Horspool
University of Victoria

Victoria, Canada
nigelh@uvic.ca

Judith Bishop
Microsoft Research

Redmond, USA
jbishop@microsoft.com

Jonathan de Halleux
Microsoft Research

Redmond, USA
jhalleux@microsoft.com

Nikolai Tillmann
Microsoft Research

Redmond, USA
nikolait@microsoft.com

ABSTRACT
Puzzles are the basic building block of Code Hunt contests.
Creating puzzles and choosing suitable puzzles from the puzzle
bank turns out to be a complex operation requiring skill and
experience. Constructing a varied and interesting mix of puzzles is
based on several factors. The major factor is the difficulty of the
puzzle, so that the contest can build up from easier puzzles to more
difficult ones. For a successful and fun contest aimed at the
expected abilities of the contestants, other factors include the
language features needed to solve the puzzle, clues to provide when
the puzzle is presented to the player, and test cases to seed into the
Code Hunt engine. We describe our experience with contest
construction over a period of year and provide guidelines for
choosing and making adjustments to the puzzles so that a Code
Hunt contest will provide a satisfying trouble-free experience for
the contestants.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer Uses in Education
– computer-assisted instruction; K.8.0 [Personal Computing]:
General – games.

General Terms
Languages.

Keywords
Programming contests, Code Hunt game, Unit tests

1. INTRODUCTION
Code Hunt is a game for coding against the computer by solving a
sequence of puzzles of increasing complexity. Code Hunt runs in
any modern browser at http://www.codehunt.com. The game is
structured into a series of sectors, which in turn contain a series of
levels. In each level, the player must write code that implements a
particular formula or algorithm. As the code develops, the game
engine gives custom progress feedback to the player, generated by
the testing engine, Pex [6]. It is part of the gameplay that the player
learns more about the nature of the goal algorithm from the progress
feedback.

The player can write code in an editor window, using either C# or
Java as the programming language. This code must implement a

top-level function called Puzzle. The puzzle has some input
parameters, and it returns a result. The player tests if the current
code implements the goal algorithm: by pressing on a big
“CAPTURE CODE” button shown in Figure 1 and Figure 2.

The result is either a compilation error, or a list of mismatches and
agreements with the goal algorithm. Figure 2 shows the code on the
left, and the mismatches (red crosses) and agreements (yellow
checkmarks) are shown on the right.

If the code compiles and there are no mismatches the player wins
this level – or as the game puts it, the player “CAPTURED!” the
code, as shown in Figure 1. A “skill rating” is assigned to the
player’s code, reflecting the elegance of the solution, measured by
its succinctness (a count of instructions in the compiled .NET
intermediate language).

Figure 1 After solving a puzzle, the player gets a score

The default game provided by Code Hunt has a theme for each
sector. The general idea is for a new programming construct to be
needed when solving puzzles in the next sector. For example, one
sector may need if-statements in the solutions, while the next sector
may require singly nested loops. The intention of this arrangement
was for Code Hunt to be used as an educational tool, giving students
experience with programming language features one-by-one.
Although the educational use of Code Hunt continues, we have
been using Code Hunt to create programming contests where the
numbers of simultaneous contestants online sometimes reach into
the thousands.

The Microsoft Code Hunt team have, to date, constructed and run
over 30 contests around the world. Each contest typically contains
12 to 36 puzzles. The contests are organized as a series of two or
more sectors, each sector normally containing four to six puzzles.
The contests run on the Code Hunt website but are accessed through
specially protected URLs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from. Permissions@acm.org.
CHESE'15, July 14 2015, Baltimore, MD, USA
© 2015 ACM. ISBN 978-1-4503-3711-3/15/07…$15.00
DOI: http://dx.doi.org/10.1145/2792404.2792405

In setting up a contest, we try to
organize the puzzles so that there is a
gentle increase in difficulty level as
players advance from one sector to the
next. Within a sector, we try to choose
puzzles which are at approximately
the same level of difficulty. However
a puzzle which is being used in a
contest for the first time may prove to
be unexpectedly challenging. For that
reason, we allow a player to progress
to the next sector with one puzzle left
unsolved in the current sector.

In previous work [1], we discussed
our experience with contests and
many of the results we have obtained.
This short experience paper is
intended to provide advice on how to
choose and fine-tune the puzzles when
a new contest is being created.

2. PUZZLE SELECTION
As of today, we have a puzzle catalog containing 391 distinct
puzzles plus another 44 puzzle clones. (We consider a clone to be
a duplicate of an existing puzzle but with different values for some
internal parameters.) Nearly all these puzzles have been previously
used in one or more contests, providing us with some data about
their difficulty levels. We use the average number of tries that a
player had at solving the puzzle as our difficulty indicator. It must
only be viewed as a rough guide because the pools of contestants
do not necessarily possess similar abilities. The average number of
tries currently ranges from a high of 40.8 (for a puzzle based on a
function used in number theory) to a low of 1.1 (for a puzzle where
the solution is the expression –x).

Some puzzles have not yet been used in a contest. These puzzles
plus any newly created ones have only subjective difficulty ratings.
These are difficulty ratings provided by the puzzle creator and
range from 1 (easy) to 5 (extremely challenging). The subjective
ratings must be used with caution however, because we have been
surprised many times when a puzzle thought to be easy turns out to
be much more challenging when used in a contest. Our most
extreme example of such a mismatch is a puzzle with a subjective
rating of 2 yet it required 14.2 tries on average to be solved. (This
is a puzzle where the input comprises the numerator and
denominator of a rational fraction, and the result is those numbers
with common factors removed.) Fortunately severe mismatches are
becoming rarer as we gain more experience.

Within the sector, we normally select puzzles with similar difficulty
ratings and which provide variety. Our puzzles have a descriptor
which can be one of numbers, bools, binary, string, or array. It
crudely describes the dominant datatypes manipulated by the
puzzle solution. We choose puzzles which span these different
datatypes as much as possible. We feel that variety is needed to
maintain interest amongst the players, and to avoid favoring or
disadvantaging players who possess uneven programming skills.

Choosing the puzzles for each sector can be an iterative process
because these puzzles need to be tried out and tuned, as explained
below. We often discard a puzzle instead of laboring through
making adjustments to the puzzle to make it more usable in the
contest.

Figure 2 Using the Code Hunt Designer Tool

3. SETTING UP A PUZZLE
When a puzzle has been selected as a possible candidate for use in
the contest, we paste that puzzle’s code into the Designer tool of
Code Hunt (reached from the Settings tab). Clicking the ‘Capture
Code’ button will immediately show us if there are any compilation
errors. If there are no compilation errors, Code Hunt will display
the initial set of test cases that would be shown to a contestant if the
initial code template is submitted as a solution. A screenshot of the
Designer tool in use is shown in Figure 2. The puzzle developer has
just pasted the specification for the puzzle in the left half of the
window and clicked on the Capture Code button. That action
caused the table of test cases to appear in the right half of the
window.

Compilation errors are only likely when a new puzzle is being
developed since nearly all puzzles in the catalog have been used in
previous contests. With all but the simplest puzzles, it is valuable
to edit the initial code template and see how the test cases change
as different partial or incorrect solutions to the puzzle are
submitted.

 All puzzles, especially new puzzles, need to be checked for the
following issues.

1. Does arithmetic overflow occur with some of the test
cases?

2. Are bool values provided as test inputs restricted to just
the C# implementations of true and false?

3. Are test inputs and test results displayed in a readable
format?

4. Is the contestant given enough clues so as to make the
puzzle reasonable?

5. Does the Pex engine generate a reasonable selection of
test inputs?

We elaborate on each of these issues below.

3.1 Overflow
The Pex engine used inside Code Hunt to generate the test cases is
trying to ‘break’ the code. Sometimes it will generate inputs which
cause overflow. For example, a puzzle whose secret solution is:

 public static int Puzzle(int X, int Y) {
 return Math.Abs(X*Y);
 }

causes Code Hunt to display the following test results:

X Y Expected Result
0 0 0

838 646 541348
1115695448 1073760398 289952048

1 Int.MinValue null

For the test cases shown in the third and fourth rows, overflow has
occurred. The overflow for the third row occurred with the
multiplication operation. That operation is not checked, and the
result is an integer which has been truncated to 32 bits. The
overflow for the fourth row occurs inside the Abs function, and this
function threw an exception (System.OverflowException).
Code Hunt displays null as the function result in this case, and
the nature of the exception is reported below the table of results.

Unless the contestants are systems programmers, i.e. people who
understand overflow issues well, constraints should be added to the
secret solution to prevent overflow from occurring. For example,
limiting both X and Y in this example to the range -100 to +100
would be reasonable.

3.2 Boolean Values
Although bool values are limited in both Java and C# to just true
or false, the .NET runtime implements a bool as an unsigned
byte which can contain integers from 0 to 255, where 0 represents
false and anything else means true. The Pex engine sometimes
generates alternate representations for true, which is unfortunate.
For example, the puzzle whose secret solution contains just the one
statement “return X&&Y;” produces these two test cases:

X Y Expected Result
false false false

true (0x02) false false

That is liable to be confusing to a player, and the secret solution
needs to be augmented with constraints which limit the test inputs
to the C# representations of true and false. A reliable way to
implement such constraints in our example is to code the secret
solution as follows:

 public static bool Puzzle(bool X, bool Y) {
 bool T = 1>0;
 PexAssume.IsTrue((X==false | X==T) &
 (Y==false | Y==T));
 return X&&Y;
 }

Note that if the constant true is used rather than the variable T in
the constraints, Pex continues to generate non-standard true values
for the test cases.

3.3 Readable Values
When a puzzle uses strings for an input or for its result, the Pex
engine will often generate test cases where the strings contain non-
printable characters. Such characters are displayed by Code Hunt
with hexadecimal notation. For example, the string "\0" is often
chosen as a test input and displayed in the test results table. To
eliminate hexadecimal character codes from the inputs, more
constraints should be added to the secret solution. Many string
puzzles restrict strings to contain characters in just the ‘a’ to ‘z’

range; many others allow both upper case and lower case letters as
well as spaces.

Another issue which affects readability is the display of array
results. If the array is relatively long and/or contains elements
which require several characters to be displayed (such as large
integers or strings or subarrays), the narrow display columns on the
webpage cause the array to wrap around over several lines. This
should be avoided if possible; constraining the arrays to contain
only a modest number of elements is desirable.

3.4 Providing Adequate Clues
Unless the puzzle is particularly easy, it is unfair to present the
contestant with a puzzle without providing some modest clues as
the nature of the function they have to discover. The clues can take
several forms. Any or all of them can be, and have been, used in a
contest puzzle. The possibilities include these.

3.4.1 Descriptive Argument Names
Choosing suggestive names for the arguments of the Puzzle
method. For example, we might name an array argument List.

3.4.2 Helpful Puzzle Headings
Providing a helpful directive as the puzzle heading. The left column
where the contestant edits the code has a heading which is provided
by the puzzle creator. For example, one puzzle displays the
message “How does this function transform the string?”. Even
though the function signature shows a string argument and a string-
valued result, the extra information that the input string must be
transformed will get the contestant thinking in the right frame of
mind.

3.4.3 Code Comments
The puzzle creator can include detailed comments inside the
solution template provided to the contestant. The comments might
explain how the function arguments encode a particular data
structure, or they might simply point the contestant in the right
direction.

For example, the catalog contains a puzzle which almost everybody
would find impossible. This puzzle takes its input argument x, an
integer greater than zero, and counts how many times the operation:
“if x is even then divide x by 2; otherwise multiply x by 3 and add
1” is repeated before x equals 1. That count is the function result.
There is no known closed formula for the solution, though it is
known that the computation will terminate for all input values
implementable on a 64 bit computer. For this puzzle, the solution
template contains the comment:

// Refs: http://www.numbertheory.org/php/
// collatz.html
// http://en.wikipedia.org/wiki/
// Collatz_conjecture

This comment should cause the contestant to visit one or both
webpages to discover that the finite nature of the number of
iterations is a well-known conjecture in number theory [2].

It is entirely up to the puzzle designer as to what help can be
provided in the form of comments. Some of the puzzles in the
default Code Hunt zone are not puzzles at all because the comments
tell the contestant exactly what must be coded as the solution.

3.4.4 Partially Completed Function Template
Nearly all puzzles in the catalog provide a minimal body for the
puzzle function. That body consists of a single return statement,
where the value being returned is typically a default value such as

0 or an empty string, whatever is appropriate for the function’s
result type. The puzzle creator can, instead, provide some initial
code which is suggestive of the solution’s structure or which
provides help in other ways.

3.5 Generating Helpful Test Values
The Pex engine is biased towards generating simple test input
values. It therefore preferentially chooses 0 for integer values,
'\0' for character values, and null for string or array values.

In the absence of some extra work from the puzzle creator, the
contestant might see test inputs for an argument whose type is array
of strings with some or all of these values:

 null, {}, {null}, {null, null}, {""},
 { "", null}, { "\0", null}, etc.

Such test values may be sufficient to show that the contestant has
not provided the correct solution, but they will usually not provide
much information about what computation is being performed by
the secret solution.

The contestant can see more test input values by providing a series
of if statements in their trial solution. For example, the trial solution
might be coded as follows:

 public static string Puzzle(string[] a) {
 if (a.Length==3 && a[0]=="abc" &&
 a[1]=="def" && a[2]=="ghi")
 return "123";
 return "";
 }

That structure should cause Code Hunt to display what the expected
result is when that particular array value is provided as the test
input. However it is tedious for the contestant to construct such test
cases. We believe that Code Hunt becomes more enjoyable if some
non-trivial test inputs are generated without needing to be prodded
by the player.

Most puzzles in the catalog have some test cases explicitly included
in their secret solutions. These can be combined with constraints
that serve further to exclude less interesting input values. To
continue the previous example, the secret solution might include
the particular array of strings as a test case with code like the
following. (The Code Hunt Designer Manual [3] explains all the
constructs used in this example and the reasons for coding it in this
manner.)

public static string Puzzle(string[] a) {
 PexAssume.IsNotNull(a);
 PexAssume.IsTrue(a.Length>0&a.Length<5);
 for(int i=0; i<a.Length; i++)
 PexAssume.IsNotNullOrEmpty(a[i]);
 // provide control flow path
 if (a.Length==3 && (a[0]=="abc" &
 a[1]=="def" & a[2]=="ghi"))
 /* do nothing */ ;
 ...
 // remainder of function omitted
 return result;
}

Trying the puzzle oneself is the best way to see which test cases are
generated by Code Hunt.

It should be noted that inserting the extra control flow paths does
not guarantee that Code Hunt will actually display test cases

corresponding to those paths. The reason is that Code Hunt limits
how many paths will be explored and how much CPU time is
expended on the analysis, and the particular path that provides the
desired test case may not be included in the analysis. Sometimes
moving the if-statement which specifies the desired test case to a
different position in the secret solution will cause that test case to
be generated. Some experimentation may be needed.

4. UPLOADING A CONTEST
When all the puzzles are ready, they are put together in order in a
contest file. Additional commands in the file provide names for the
contest and the sectors. Optional commands can define the times
when the contest will be active. Full details are provided in the
designer manual [3]. When the file is complete, its contents are
copied into the Code Hunt Developer Tool window. Clicking on
the Capture Code button causes the contest to be checked and
uploaded to the cloud. In a short while, the system returns with a
URL which is then the special access point for that contest’s zone.

5. RELATED WORK AND PLANS
Programming contests have run for decades. A recent
comprehensive survey of formats used for on-line programming
contests and how such contests can be used in education and
training has been provided by Combéfis and Wautelet [4].

A commonly used contest format is to have a problem specification,
a reference solution and a set of test fixed cases [5]. In Code Hunt,
we still write the reference solution, but the system generates test
cases, and the specification is not given – that is part of the fun of
the game.

We are currently working on curating all the puzzles into a portal,
so that others, apart from ourselves, can create contests. We are also
considering how to extend the website so that a contest can provide
a spectator experience too. The idea is that spectators will be able
to observe how contestants are faring and can see events such as
when a contestant solves a puzzle in a new fastest time.

The demand for data on how people reach a solution in
programming is high, so we have released all 13,000 programs
from one contest at http://www.github.com/microsoft/code-hunt .
We will soon release another data set.

6. ACKNOWLEDGMENTS
Our thanks to all members of the Code Hunt team for implementing
this amazing website.

7. REFERENCES
[1] Judith Bishop, R Nigel Horspool, Tao Xie, Nikolai Tillmann,

Code Hunt: Experience with Coding Contests at Scale, ICSE
(JSEET Track), 398-497, 2015

[2] Collatz conjecture. Wikipedia. URL:
http://en.wikipedia.org/wiki/Collatz_conjecture

[3] Code Hunt Designer Manual. URL:
https://www.codehunt.com/docs/designer.html.

[4] Sébastien Combéfis, Jérémy Wautelet, Programming
Trainings and Informatics Teaching Through Online
Contests. Olympiads in Informatics, vol 8, 21-24, 2014.

[5] From Baylor to Baylor, lulu.com, by Miguel A. Revilla
(Compiler), William B. Poucher (Foreword), 2010

[6] Tillmann, N., and de Halleux, J. Pex – White Box Test
Generation for .NET. Proc. Tests and Proofs (TAP), pp 134–
153, 2008.

