
On the Efficiency of Design Patterns
Implemented in C# 3.0

Judith Bishop1 and R. Nigel Horspool2

1 Department of Computer Science, University of Pretoria, Pretoria, South Africa
jbishop@cs.up.ac.za http://www.cs.up.ac.za/~jbishop

2 Department of Computer Science, University of Victoria, Victoria, BC, Canada
nigelh@cs.uvic.ca http://www.cs.uvic.ca/~nigelh

Abstract. From the very inception of design patterns, there was the
anticipation that some of them would be superceded by new language
features. Yet published implementations of classic patterns do not gener-
ally live up to this promise. The occurrence of generics, delegates, nested
classes, reflection and built-in iteration is confined to a few patterns in
a few published compendiums in a few languages. In this paper we trace
the interplay between languages and patterns over the past decade and
investigate how relevant language features really are for pattern imple-
mentation. We back our conclusions with a detailed look at the visitor
pattern, examining the impact of C# developed in the past few years. We
conclude that efficiency should play a large role in the choice of design
pattern implementation, since some new features still bring with them
runtime overheads.

Key words: design patterns, efficiency, C# 3.0, visitor pattern, reflec-
tion, dynamic dispatch, delegates

1 Introduction

Design patterns represent a layer of abstraction above that of programming
language features. They are rapidly becoming a unit of discourse among soft-
ware developers, and have transformed the way in which software is designed and
discussed. The distance between design patterns and programming language fea-
tures is, however, by no means constant. It varies between different languages,
and more particularly within the same language as new features are introduced.
Over the years, language design has evolved so that some patterns can be imple-
mented almost directly. For example, the interface mechanism common in Java
and C# almost dissolves the Template Method pattern. Not all patterns have
benefited equally. Most implementations of the Visitor pattern still follow a com-
plex structure of class and method interactions, made easier but not completely
transparent, by advanced features such as generics and reflection.

These tensions are summarized in the diagram in Figure 1. We start with
the full set of 23 patterns [11]. If a new language feature is included in an
implementation of a pattern, it might have an effect on efficiency — for better
or worse.

http://www.cs.up.ac.za/~jbishop
http://www.cs.uvic.ca/~nigelh


2 Judith Bishop and Nigel Horspool

It is this drop in efficiency that we wish to explore and quantify. An ex-
haustive study of all the patterns is underway: this paper is a starting point. It
surveys and brings up to date the research on this issue over the past decade; it
highlights certain patterns that are known to be responsive to language changes,
and presents the results of experiments for one of the most complex patterns, the
Visitor. An important contribution of the paper is the survey of methodologies
used so far to match language features to patterns, thus enabling those in the
higher efficiency group to be identified.

'
&

$
%Patterns

'
&

$
%

New language
features are not

used

'
&

$
%

New language
features are used

'
&

$
%

No change in
efficiency

'
&

$
%

Lower
efficiency

'
&

$
%

Higher
efficiency

��
�
�*

HH
HHj

��
��*

H
HHHj

��
��*

HH
HHj

Fig. 1. The effect of language evolution on design pattern efficiency

2 Relationship between patterns and languages

The abstraction level of languages rises constantly [4], having an inevitable effect
on the way in which patterns are implemented. There is a movement towards
leveraging the value of patterns by componentizing them in libraries. The back-
ground to these two movements, and their convergence, is now discussed.

2.1 Replacing patterns by features

Design patterns provide a high-level language of discourse for programmers to
describe their systems and to discuss common problems and solutions. This
language comprises the names of recognizable patterns and their elements. The



Efficiency of Design Patterns in C#3.0 3

proper and intelligent use of patterns guides developers into designing systems
that conform to well-established prior practices, without stifling innovation.

The original group of patterns was implemented in the era of C++, with some
tempering by Smalltalk [11] and reflected the capabilities of those languages, for
good and bad. Indeed, Gamma states that

If we assumed procedural languages, we might have included design pat-
terns called “inheritance”, “Encapsulation”, and “Polymorphism”. Simi-
larly, some of our patterns are supported directly by less common object-
oriented languages.

It was certainly not an aim of design patterns to force a certain way of
coding, thus deprecating the value of new language features that could make
design patterns significantly easier to express.

The debate over which language features these would be began a decade ago
[3, 12, 1, 6, 7]. Java and more notably C# have added significant language fea-
tures over the last decade. For example, C# 2.0, which was developed between
2002 and 2005, added generics, anonymous methods, iterators, partial and nul-
lable types. C# 3.0, finalized in 2007, focuses on features that would bring the
language closer to the data that pours out of databases, enabling its structure to
be described and checked more accurately. These features included: implicit typ-
ing of local variables and arrays, anonymous types, object and array initializers,
extension methods, lambda expressions and query expressions (LINQ).

Two studies that have looked at how to identify the patterns that would
benefit from new language features, and thus would fall in the upper right part
of Figure 1. Agerbo and Cornils [1] list reasons why it is important to divide
patterns into the following classes:

– Language Dependent Design Patterns (LDDPs)
– Related Design Patterns (RDPs)
– Fundamental Design Patterns (FDPs)
– Library Design Patterns (LDPs)

The first category consists of patterns that are covered by a feature in one
language, but not yet all. For example, the Factory Method aims to create ob-
jects whose exact classes are unknown until runtime. Using interfaces, which are
common these days, the creator class can be bound at runtime. Similarly, the
Chain of Responsibility pattern can make use of the delegate feature in languages
such as C# and VB. Agerbo envisages that once the features supporting a pat-
tern in the LDDP group become widely available across languages, the pattern
essentially loses its status. It can then be removed from the pattern language of
discourse. An advantage of this approach is that the number of patterns will stay
within manageable proportions. The first column of Table 1 lists the patterns
that Agerbo regarded as LDDPs.

RDPs are those that can be implemented using another pattern. The exam-
ple quoted is the Observer pattern that can be implemented using the Mediator.
Another common relationship is the Interpreter pattern which uses the Visitor
[5]. The patterns that remain are then the fundamental ones, and according to



4 Judith Bishop and Nigel Horspool

LDDPs Cliches and idioms

Chain of Responsibility Delegates
Command Procedure classes classes
Fa cade Nested classes encapsulation
Factory Method Virtual classes
Memento persistence
Prototype Pattern variables Deep copy
Singleton Singular objects module
Template method Complete block structure overriding
Visitor Multiple dispatch Multi-methods

Table 1. Patterns supported by language features, the LDDPs of Agerbo and Cornils
[1] and the cliches/idioms of Gil and Lorenz [12]

this study they comprise the 11 shown in Table 2. Of course, we can imme-
diately see that the list is dated, because Iterator and Memento, for example,
have been covered by advances in both Java and C# (iterators and serializable
respectively). Nevertheless, the classification is a useful one because it can be
applied to the burgeoning group of new patterns, not just to the original 23. We
come back to Agerbo’s LDPs under the Componentization section.

FDPs cadets

Bridge X X
Builder X X
Composite X X
Decorator X X
Mediator X X
Proxy X X
State X X
Adapter X
Chain of Responsibility X
Interpreter X
Observer X
Strategy X
Visitor X
Abstract factory X
Flyweight X
Iterator X
Memento X

Total 11 13

Table 2. Fundamental patterns identified as FDPs by Agerbo and Cornils [1] and as
cadets by Gil and Lorenz [12]



Efficiency of Design Patterns in C#3.0 5

Gil and Lorenz [12] earlier attempted a similar classification. Their cliches
and idioms could mimic features found in languages, whereas cadets are still
candidates for language support. Their standpoint was that patterns, once iden-
tified as such, could and indeed should grow into language features. This group
is shown in the second column of Table 1. At the time, the ones they identified
as still requiring support are shown in Table 2.

Assessment. Both papers put forward the belief that the ultimate goal is
that the patterns left in Table 2 should eventually develop into single language
features or programming language paradigms. We do not fully agree with this
standpoint for these reasons:

1. A feature is much more broadly applicable than just for one pattern. Del-
egates, for example, are used in Adapters, Mediators and Observers. We
would be losing information if all these solutions were subverted under the
term “delegate”.

2. A pattern needs more than one prominent feature. The Visitor is an example
here: the complexity of its design cannot be replaced by one single feature.

3. Patterns can have valid alternative implementations. The choice would be
based on non-functional properties such as maintainability, traceability and
most of all efficiency. One might be easier to understand, the other more
efficient.

Thus every great programming idea cannot be turned into a realistic language
feature, otherwise languages would explode. There will always be a place for
design patterns.

Other work. In an in-depth but unpublished report that predates the above
two, Baumgartner, Laüfer and Russo [3] make a call for features that will con-
tribute to the implementation of design patterns, including (in modern parlance)
interfaces, singleton variables, generics, metaclass objects, and multiple dispatch.
In the ensuing years, language design has either realized the suggestions or has
moved in other directions.

Bosch’s work [6] concentrates on the reasons why languages should mimic
design patterns, and gives several detailed examples in the context of a layered
object model. His four point check list — traceability, the self problem, reusabil-
ity and implementation overhead — is still valid today, but the contribution of
his solutions is dimmed by being couched in terms of an object modeling lan-
guage LayOM. The solutions presented address the first three points, but little
mention is made of improvements in implementation overhead.

Subsequently, Chambers [7] examined the influence of the experimental lan-
guages of the day (Cecil, Dylan and Self) and looked ahead to first-class generic
functions, multiple dispatching and a flexible polymorphic type system, all of
which are once again in mainstream languages now.



6 Judith Bishop and Nigel Horspool

2.2 Libraries of design patterns

The traceability problem mentioned by [6] can be addressed by implementing
patterns as library components. When using such an LDP [1] it will be possi-
ble to trace from which design pattern the implementation ideas come. Arnout
and Meyer [15] are keener on the benefits to be reaped by reuse of pattern
implementations. Having analyzed the standard patterns, they conclude that
fully two-thirds admit of a componentized replacement, enabling developers to
rely on an API from a pattern library rather than re-implementing the pattern.
However, achieving this level of re-use relies on some high level language fea-
tures present in Eiffel, including genericity, agents, tuples, design by contract
and multiple inheritance. Agerbo [1] reports being able to make library routines
for 10 of the 23 patterns (43%) using, in particular, generics, virtual classes and
nested classes.

There is some disagreement over the efficiency of this approach. Very early
on, Frick et al. [9] highlighted the tension that exists between flexibility of a
robust library and the efficient implementation of a class or method. Agerbo [1]
reports that applying a design pattern from a library reduces the implementation
overhead, whereas Arnout and Meyer present mixed results: the Abstract Factory
pattern is report as having no overhead in the library implementation [2] but the
Visitor pattern suffers a 40% degradation [15]. However, the Visitor pattern has
long been known as sensitive to tinkering [17] and the library orientation might
not be the only cause for the drop in performance. (We return to this theme
later.) Another study [10] looks at a library version of the Strategy pattern,
specifically aimed at embedded code. The concern is that virtual method calls
that are key to this pattern really slow down execution. The solution proposed
is to generate compile-time generated and optimized code, and the results show
an improvement in both code size and speed.

The major effort in library support has now switched to the use of aspects
with design patterns. Hannemann and Kiczales [14] were able to make routines
for 12 patterns (52%). The paper presents results for the locality, reusability,
composition transparency and (un) pluggability of the AspectJ versions of pat-
terns. The benefits of localising patterns as aspects are the inherent code com-
prehensibility, better documentation and the potential for composability. It is
worthwhile noting that these are very much the same benefits that are claimed
for using higher-level language features.

3 The impact of C# 3.0

The reader will have noticed that the majority of references in the previous
section are to studies done in the late nineties (the exception being the work
of Arnout and Meyer with Eiffel [2]), when C++, Java and the usual host of
experimental languages were the prime contenders for pattern implementation.
We choose to examine the impact of features in C# 3.0, a commercial object-
oriented language, 10 years on.



Efficiency of Design Patterns in C#3.0 7

3.1 Features in C#

C# 1.0, announced with the first .NET release in 2000 made significant advances
over Java, shown in Table 3. C# 2.0 added five important features in 2005, espe-
cially generics, which had been available in some implementations for two years.
C# 3.0, finalized in 2006, focused on features that would bring the language
closer to the needs of databases and has a distinct functional feel about it [16].

C# 1.0 (2002) C# 2.0 (2005) C# 3.0 (2007)

structs generics implicit typing
properties anonymous methods anonymous types
foreach loops iterators object and array initializers
autoboxing partial types extension methods
delegates and events nullable types lambda expressions
indexers generic delegates query expressions (LINQ)
operator overloading
enumerated types with IO
in, out and ref parameters
formatted output

API
Serializable standard generic delegates
Reflection

Table 3. The development of C#

It is still open territory as to whether, and how, these new language features
should be used in implementing design patterns. In books and writings on web
sites the pull of custom is very strong. Because implementations of the patterns
were originally given in C++ and Smalltalk, which have their own particular
object-oriented styles, the translations into other languages have not always been
completely satisfactory. It is a challenge to make the most of a language, while
at the same time retaining the link with the design pattern and its terminology.
Although design patterns do not force a certain way of coding, a look at the
expository examples in most Java or C# books will show little deviation from
the C++ style of the 1990s. It would seem that the promise of language features
making patterns easier to implement has been slow to realize. The features are
there now, and it is a question of showing how they can be used, and in assessing
their efficiency. Not all the features listed in Table 3 are directly relevant for
patterns, but a surprising number are.

3.2 Pattern implementation in C#

We now present the results of two complete implementations of the patterns,
from DoFactory [8] and Bishop [5].



8 Judith Bishop and Nigel Horspool

DoFactory is a commercial organization that sells frameworks of patterns in
C# and Visual Basic. They are widely consulted. Each pattern comes in three
versions, known as Structural (not to be confused with structural as a pattern
group), RealWorld and NETOptimized. The first version usually follows a direct
implementation of the classic UML diagrams from Gamma et al. [11]. The Re-
alWorld version expands the Structural implementation into a longer example
where the names of classes reflect an actual scenario. Both these versions use
very little in the way of new language features, sticking to inheritance and inter-
faces for expressing the relationships between classes — essentially representing
object-orientation at the Java or C++ level. Where it is very difficult to imple-
ment a pattern at this level in a short example (for example, deep copy in the
Prototype pattern), the functionality is left out. A NETOptimized solution is a
rework of the RealWorld version, using as many C# 2.0 features as are fitting.
Since the programs have not been updated since 2006, they do not include any
features new to C# 3.0.

The implementations in Bishop [5] had the specific aim of exploring new
language features. They also come in two versions, known as the Theory code and
Example code. The Theory code is similar in length and intent to the Structural
versions from DoFactory, and presents a minimalist version of each pattern, in
which the essential elements can be seen in stark relief. The Examples add flesh
to the pattern, and in many cases use more or slightly different features as a
result.

Table 4 itemizes those pattern implementations in DoFactory’s NETOpti-
mized and Bishop’s Example sets that use advanced C# features. The patterns
are sorted according to features used, from the left. Those patterns that are omit-
ted — Builder, Decorator, Factory Method, State, Strategy, Interpreter, Fa cade,
Template Method, Flyweight — did not use any of the mentioned features in
either implementation.

All of the pattern implementations (both those mentioned in Table 4 and
the rest) make use of normal OOPS features such as inheritance, overriding,
composition, access modifiers and namespaces, as well as other C# features
such as properties, indexers, structs and (in the case of the Bishop set) object
and array initializers. Consider now what Table 4 reveals.

1. Delegates, generics, iterators and nested classes are the language features
that are exercised by 10 of the patterns.

2. The .NET features of Serializable and Reflection are used by three patterns.
3. The C# 3.0 features of extension methods and query expressions make an

appearance in two patterns.

From this list, we can extract various pattern-feature pairs for investigation in
terms of efficiency. In particular, those patterns that are already using a feature
in one set of implementations, but not the other, are excellent candidates. For
example, we can consider delegates in the Adapter pattern or query expressions
(LINQ) in the Iterator pattern. The next section presents several implementa-
tions of the Visitor patern taken from these sources and others, and compares
them for efficiency.



Efficiency of Design Patterns in C#3.0 9

d
el

eg
a
te

/
ev

en
t

g
en

er
ic

s

it
er

a
to

r

n
es

te
d

cl
a
ss

S
er

ia
li
za

b
le

R
efl

ec
ti

o
n

ex
te

n
si

o
n

m
et

h
o
d
s

q
u
er

y
ex

p
re

ss
io

n
s

Adapter y

Command y

Mediator y

Chain x x

Observer x y x

Abstract Factory y

Composite x y

Iterator x y y

Proxy x y

Singleton x y

Memento x y

Prototype x y

Visitor x

Bridge y

Table 4. Advanced C# features in design patterns: x indicates DoFactory’s NETOp-
timized implementations, y indicates Bishop’s set

4 Experimenting with the Visitor pattern

The Visitor pattern defines and performs new operations on all the elements of
an existing structure, without altering its classes. The pattern has two distinct
parts: there are the classes that make up an object structure, and then there
are the operations that will be applied to the objects in the structure. The
complexity of the Visitor is enhanced by the fact that the object structure is
usually assumed to have a variety of classes (often hierarchical) and different
visit operations will be applicable for each type. There can also be different
visitors, potentially traversing around the structure at the same time. Thus the
language features required for its implementation revolve around type matching
at runtime to find the correct Visit method.

There have been numerous studies of the Visitor pattern over the years, some
of which are mentioned in Section 2.2 [17] [15]. What we present here is a fresh
look at the pattern with four implementations, two of which make use of the
features in Table 4 and two of which stick to ordinary OOP features

While our prime aim is to reveal the efficiency of implementations that make
use of different language features, we need to balance these results against the
other non-functional requirements mentioned in Section 2: readability, writeabil-



10 Judith Bishop and Nigel Horspool

ity, maintainability and traceability. We introduce these, as we describe the four
implementations.

4.1 Double dispatch

The classic technique for implementing the Visitor pattern follows three steps.
Each data type is made visitor-ready by adding an identical Accept method:

public override void Accept(IVisitor visitor) {
visitor.Visit(this);

}

Then there is an interface that lists a version of Visit for every possible data
type. When a data type is added, the interface has to be amended.

interface IVisitor {
void Visit (Element element);
void Visit (ElementWithLink element);

}

The content of the visiting code is in methods all called Visit, defined for
each data type in the structure. The content of the methods is part of the
application, not the pattern.

Once that is all in place, the method that traverses the data structure can
call Accept on objects of structure and dynamic binding will ensure that the
correct Accept and the correct Visit method is invoked. This is the double
dispatch mechanism. A simple program would be:

public void CountElements(Element element) {
element.Accept(this);
if (element.Link!=null) CountElements(element.Link);
if (element.Next!=null) CountElements(element.Next);

}

The effort required to set up this scaffolding for double dispatch is quite
daunting, and works against all the goals of traceability, readability, writability
and maintainability [6]. The type matching is done at runtime, but directly
through the virtual method tables kept for each object. Its advantage therefore
is that there is very little hidden overhead.

4.2 Reflection

A completely different implementation is to let the runtime system search for
the type, using the metadata available through reflection. The Visitor includes
the following standard dictionary and method:

static Dictionary<Type, MethodInfo> methods =
new Dictionary<Type, MethodInfo>();



Efficiency of Design Patterns in C#3.0 11

public override void Visit(Element x) {
Type type = x.GetType();
if (!methods.ContainsKey(type)) {

Type[] types = { type };
methods[type] = this.GetType().GetMethod("Visit", types);

}
if (methods[type] != null)

methods[type].Invoke(this, new object[] { x });
else

throw new Exception("no Visit method found");
}

This Visit method takes it upon itself to find out which of the actual Visit
methods need to be called. It searches through the metadata available regarding
the signatures of the methods called Visit. This version is an improvement over
than in the Dofactory, in that it caches the method reference once found, and
will not go through the look up process again. The cache is a generic Dictionary
indexed by the type of x.

The reflection implementation is non-invasive to both the data structure and
the Visitor. However, reflection is expensive and the approach suffers from a
severe speed overhead.

The use of reflection to implement the Visitor pattern was previously in-
vestigated by Palsberg and Jay [18], among others. Their solution encapsulated
the reflection inside a library class which they called the Walkabout. A recent
advance over the Walkabout by Grothoff [13] is the Runabout class. It generates
bytecode at run-time to make the execution much faster — only about 2 to 10
times slower than double-dispatch once the overhead of creating the bytecode
has been incurred.

4.3 Type Testing

A variation on double-dispatch which avoids invading the data structure is type
testing (also called an extrinsic visitor [17]). The choice of the correct Visit
method is done by a sequence of if statements in the application itself. Using
the same program as before, the application’s method will be:

public void CountElements(Element element) {
if (element is ElementWithLink)

Visit(element as ElementWithLink); else
if (element is Element)

Visit(element as Element);
if (element.Link!=null) CountElements(element.Link);
if (element.Next!=null) CountElements(element.Next);

}

Here it is the application that is polluted with details pertaining to the data
structure. If the number of data types is large, and if the data structure is to



12 Judith Bishop and Nigel Horspool

be visited from more than one place in the application, this type testing can
become tedious to write and maintain. A variation of this approach is to go back
into the data types and have them maintain a class ID that can be used in a
switch statement, somewhat faster than cascading if statements [17].

4.4 Delegates

Finally, we investigated the place of delegates in this pattern. Using a delegate,
we don’t have to pass the Visitor instance as a parameter into the data objects
— the delegate contains a binding to both the Visitor instance and the method
inside that instance. Then we replace a virtual dispatch v.Visit with a delegate
call.

In each type in the data structure we add the following delegate and property:

public static VisitorDelegate vd;
public override VisitorDelegate VD { get {return vd;}}

Unfortunately, we cannot use the neat automatic property of C# 3.0 (where
the get and set actions are generated by the compiler) because the property is
overriding the property in the base type, and also giving access to a static field.
The two unfortunately don’t mix.

At the start of the Visitor, the delegates are set up, as in:

Element.vd = TallyFunction;
ElementWithLink.vd = delegate (Elements e) {

Console.WriteLine("not counted");
};

where TallyFunction is a method of the Visitor class which visits an instance
of type Element.

The advantage of the delegate method in terms of writeability is that the
Visit methods can have different names, i.e. they do not all have to be called
Visit, and also trivial visit functionality does not need a method at all: it can
be expressed as an anonymous function. The above example shows both options.
Thus, when using delegates, one can tailor one’s code more to the real visiting,
and not make it so stylised.

4.5 Results

We evaluate the Visitor implementations in two ways: for efficiency and for the
non-functional properties.

In our experiments, the data structure being visited is a tree where there
are N choices of the data type for a non-leaf node and L choices for the data
type of a leaf node. All non-leaf nodes have two children. The tree was generated
as a balanced tree of depth 10 in every case (so the tree contains 1023 nodes
in total), where the data types of the nodes were selected randomly from the
possible choices.



Efficiency of Design Patterns in C#3.0 13

All times in Table 5 are reported as ticks per visited node, where one tick
is equal to 100 nanoseconds. The times are measured over 100 traversals of the
tree on an Intel Core 2 Duo running at 2.67GHz. Each visit method performs
minimal work — just incrementing a counter. If visit methods did some real work
(or performed I/O) then the timing differences would be obscured. In order to
eliminate JIT effects from the timings, the test program performs one traversal
of the data structure before starting the clock. All invoked methods are therefore
JIT’ed in advance.

Tree Classes Visitor Implementation

N L N+L DD TT DE RC

1 1 2 10 19 11 3791
2 1 3 10 23 12 3782
2 2 4 10 24 11 3809
3 2 5 11 30 13 3748
4 2 6 12 36 13 3852
4 3 7 14 39 16 3832
5 3 8 15 43 16 3784

N = Number of non-leaf classes
L = Number of leaf classes
DD = Double-dispatch implementation of visitor
TT = Sequence of type-tests to select visitor method
DE = Delegates to select visitor method
RC = Reflection with a cache to select visitor method

Times measured as ticks per node; 1 tick = 100 ns

Table 5. Visitor pattern timings

Both the double-dispatch and the delegate approach perform well. As long
as the number of classes in the data structure is reasonable (say in the tens
or twenties), the sequence of type-tests approach is probably good enough. (It
should be noted that the is test is not necessarily fast.) However the implemen-
tation of reflection is comparatively so expensive that it should probably not be
advocated either for large structures or for time critical applications.

The non-functional properties are a combination of the factors listed in Ta-
ble 6.

In terms of non-functional properties, the reflection cached approach is a
clear winner as it can add a visitor framework onto existing code. However, if
building from scratch, the delegate version has much to recommend it, in that
it is sensitive to the real code of the Visitor, in terms of naming and structure.
The double-dispatch version, on the other hand, imposes a regimen of Accept
and Visit methods, including the names.



14 Judith Bishop and Nigel Horspool

Double
Dispatch

Type Test Delegates
Reflection
Cached

Invasive of
the data
structure

Yes — add a
standard
method

No
Yes — add a
delegate and
property

No

Invasive of
the Visitor

Interface
listing a
Visit

method for
each type

Only the
type tests,
embedded in
the Visitor
code

Delegate
initialization
in the
constructor

Single
standard
Visit

method
containing a
reflective test

Constraining
the visitor

A Visit

method must
exist for each
type

No — visit
methods can
have any
name and be
omitted

No — Visit
methods can
have any
name and be
omitted

All methods
must be
called Visit,
but can be
omitted

Main
Disadvantage

Unnecessary
empty Visit

methods

Type tests
might need
to be
repeated in
the Visitor
code

Cannot
easily have
two Visitors
running
together

Significant
hidden
overhead due
to use of
reflection

Main
Advantage

No hidden
overhead

Integrated
with Visitor
code

Works with
the Visitor
code to be
efficient

Almost
transparent
to Visitor
and data
structure

Table 6. Visitor method implementation comparison

We can also extend the Delegate implementation to handle multiple kinds
of Visitor. Add a static list of delegates in each data structure class. Then each
Visitor, when constructed, takes the next slot in each visitee class’s array to fill
in the delegate reference and remembers the index of that slot. The VD property
in each data structure class becomes:

public static List <VisitorDelegate> vd;
public override VisitorDelegate VD (int slot)

{get {return vd[slot];}}

There will be a small performance hit with the generalized approach because
of the cost of passing the extra parameter and of indexing the delegates list.
However, the changes are standard throughout the methods.



Efficiency of Design Patterns in C#3.0 15

5 Conclusions and Future Work

This is the first time that a comparative study of patterns aimed at non-
functional attributes has been made, and it brings up to date the work that was
started more a decade ago. We have surveyed the various approaches to identi-
fying the patterns that are amenable to new language features, and then tested
how this is progressing in 2008 by using two sets of available pattern implemen-
tations. Homing in on one of the complex patterns, the Visitor, we conclude that
new features such as delegates, generics and properties, when used together, can
make for a readable implementation which has an acceptable efficiency overhead
(the DE or delegates implementation).

In work ongoing we are examining the other patterns in the same way, and
producing a bank of results. One problem we face is in isolating a testbed for
a pattern, since some of them simply do not work well unless there is a real
world harness in place. We shall therefore look at how patterns are used and
position our experiments both in an image of the real world, and in an abstract
environment.

Acknowledgements. Our thanks to Pierre-Henri Kuaté who ran the programs
to obtain the results, and to him, Rhodes Brown and Stefan Gruner for helpful
discussions. This work was supported by grants from the National Research
Foundation of South Africa and the Natural Sciences and Engineering Research
Council of Canada.

References

1. Agerbo, E., and Cornils, A.: How to Preserve the Benefits of Design Patterns. Proc.
OOPLSA, pp. 134–143 (1998)

2. Arnout, K., and Meyer, B.: Pattern Componentization: the Factory Example, In-
novations in Systems and Software Technology: A NASA Journal 2, (2), pp. 65–79,
(2006).

3. Baumgartner, G., Läufer, K., and Russo, V.F.: On the interaction of object-
oriented design patterns and programming languages. Technical Report CSR-TR-
96-020, Purdue University (1996).

4. Bishop, J.: Language features meet design patterns: raising the abstraction bar.
Workshop on the Role of Abstraction in Software Engineering (ROA 08), co-located
with ICSE 2008: to appear.

5. Bishop, J.: C# 3.0 Design Patterns. O’Reilly Media, Sebastapol, CA, 2008
6. Bosch, J.: Design Patterns as Language Constructs. Journal of Object-Oriented

Programming 11, 2, pp. 18–32 (1998)
7. Chambers, C., Harrison, W., and Vlissides, J.: A Debate on Language and Tool

Support for Design Patterns. Proc. 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 277–289 (2000)

8. Data and Object Factory, Design Pattern Framework: C# Edition. http://www.
dofactory.com/Default.aspx (2006)

9. Frick, A., Zimmer, W., and Zimmermann, W.: On the Design of Reliable Libraries.
Proc. of TOOLS 17, pp. 13–23 (1995)

http://www.dofactory.com/Default.aspx
http://www.dofactory.com/Default.aspx


16 Judith Bishop and Nigel Horspool

10. Friedrich, M., Papajewski, H., Schröder-Preikschat, W., Spinczyk, O., Spinczyk,
U.: Efficient Object-Oriented Software with Design Patterns. Proc. of Symposium
on Generative and Component-based Software Engineering, (GCSE 99), LNCS
1799, pp. 79–90 (2000).

11. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Boston, MA, Addison-Wesley (1995).

12. Gil, J., and Lorenz, D.: Design Patterns vs Language Design. Proc. of Workshop on
Language Support for Design Patterns and Object-Oriented Frameworks (LSDF),
pp. 108–111 (1997)

13. Grothoff, A.: The Runabout. Software: Practice and Experience, to appear (2008)
14. Hannemann, J., and Kiczales, G.: Design Pattern Implementation in Java and

AspectJ. Proc. of OOPSLA, pp. 161–173 (2002)
15. Meyer, B., and Arnout, K.: Componentization: the Visitor Example. Computer 39,

(7), pp. 23–30 (2006)
16. Microsoft Corporation: C# 3.0 Reference Documentation, http://msdn2.

microsoft.com/vcsharp

17. Nordberg III, M.E.: Variations on the Visitor Pattern. Proc. of Workshop on Pat-
tern Languages of Programming (PLoP), (1996).

18. Palsberg, J., and Jay, C.B.: The essence of the Visitor Pattern. Proc. 22nd IEEE
Int. Computer Software and Applications Conf. (COMPSAC), pp. 9–15, (1998)

http://msdn2.microsoft.com/vcsharp
http://msdn2.microsoft.com/vcsharp

	Lecture Notes in Business Information Processing
	Judith Bishop, Nigel Horspool
	Introduction
	Relationship between patterns and languages
	Replacing patterns by features
	Assessment.
	Other work.

	Libraries of design patterns

	The impact of C# 3.0
	Features in C#
	Pattern implementation in C#

	Experimenting with the Visitor pattern
	Double dispatch
	Reflection
	Type Testing
	Delegates
	Results

	Conclusions and Future Work
	References



