
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(12), 1253–1268 (OCTOBER 1998)

Tailored Compression of Java Class Files

r. nigel horspool and jason corless
Department of Computer Science, University of Victoria, P.O. Box 3055, Victoria, BC,

Canada V8W 3P6
(email: nigelh@csr.uvic.ca)

SUMMARY

Java class files can be transmitted more efficiently over a network if they are compressed. After
an examination of the class file structure and obtaining statistics from a large collection of class
files, we propose a compression scheme that is tailored to class files. Our scheme achieves
significantly better compression than commonly used methods such as ZIP. 1998 John Wiley &
Sons, Ltd.

key words: data compression; Java; class file

INTRODUCTION

The Java programming language1 and its implementation using a Java Virtual
Machine (JVM)2 have greatly simplified the task of developing web-based application
programs. In this and in other roles, Java has been a runaway success. When a Java
program is compiled, it is translated into a collection ofclass files. Each class file
contains a variety of components, including instructions for the JVM as well as data
constants, interface specifications and other information. When a remote user executes
a Java applet, the class files are downloaded over the internet onto the user’s
machine and interpretively executed by a copy of the JVM on that machine. An
alternative is that the class files might be translated on the user’s machine into
native machine code using a Just-In-Time (JIT) Java compiler.

It is clearly advantageous for the Java class files to be made as small as possible.
The smaller the file, the shorter the transmission time to deliver the file to its
destination. If the user is being charged for connect time or for the number of data
packets delivered, then smaller files would also have an economic benefit. Trans-
mission of a class file in a compressed format and decompressing the file on the
user’s machine should improve overall performance provided that the decompression
process consumes reasonable amounts of computation, and does not occupy excessive
amounts of main memory.

There are many general purpose data compression programs which could be used
to reduce the size of a Java class file. Some examples of widely available compression
programs aregzip, zip, and compress.3 However, they tend not to be as effective
on Java class files as on file formats. The reason is that these compression programs
work by finding repetitions and by coding the repeated patterns of data in an efficient

Received 10 September 1997
CCC 0038–0644/98/121253–16$17.50 Revised 19 March 1998
 1998 John Wiley & Sons, Ltd. Accepted 17 April 1998

1254 r. n. horspool and j. corless

manner. The longer the input, the more opportunity there is for finding repetitions
and the better the compression usually becomes. Unfortunately, a typical class file
for a Java program is quite short, perhaps just a few hundred bytes in size, and the
file is organized into several sections. Each section contains data in a different
format. It is unlikely that the data in one section of a class file will repeat any
patterns of bytes encountered in a previous section of the file. Given the short size
of a class file and the fragmented nature of each file, a general-purpose compression
algorithm has too little opportunity to adapt to a class file section before the end of
that section is reached.

There has been some work on compression methods that are specifically targeted
to executable files or tuned for such files. Recently, Ernstet al.4 reported a
compressed ‘wire’ representation that reduces SPARC code to 21 per cent of its
original size. However, as we will argue, their techniques would be relatively
ineffective on Java class files because of their small size. Yu’s5 approach achieves
excellent compression on executable files and is well suited to its main task of
compressing software that is being distributed on floppy disks. It too benefits from
having reasonably large quantities of data to compress and would also be ineffectual
if applied separately to small files like the Java class files. Yu’s algorithm is based
on LZSS3,6 with a non-greedy matching heuristic and, in that regard, is similar to gzip.

If we wish to achieve good compression on Java class files, the only realistic
approach is to develop a compression program which has been customized to the
Java class file format. Such a program would waste very little time adapting itself
to a particular file and would be able to achieve some compression on even the
smallest files.

In this paper, we report on a compression/decompression program named clazz
which was developed specifically for Java class files. Our program outperforms both
gzip and bzip27 by a wide margin. The bzip2 method is close to being the best
available general-purpose compression method for text files. Detailed information
about the clazz program and the experimental methodology is available in the second
author’s MSc dissertation.8

The following sections of this paper provide an overview of the Java class file
structure, then explain how we developed a customized compression method, and
finally report on how well our method works on a collection of class files.

STRUCTURE OF JAVA PROGRAMS AND JAVA CLASS FILES

A Java program could comprise a stand-alone application program or an applet to
be invoked from a web page. In either form, the program will have been constructed
as a collection of Java classes. It is a requirement of some of the standard Java
compilers that each class declared as ‘public’ must be compiled separately. In effect,
a Java source code file should contain a declaration of exactly one public class plus,
optionally, some declarations of private classes. Each source code file is translated
by the compiler into a so-calledclass file. For example, if an application program
is constructed from source code files named Main.java, One.java and Two.java then
the compilation command

javac Main.java One.java Two.java

1255compression of java class files

using Sun’s JDK implementation on a Sun workstation will create three files with
the names Main.class, One.class and Two.class.

A group of related class files may be stored together on the computer’s hard drive
as apackage. It is a common practice to use zip file format9 for this collection of
files, thus making it simpler to treat a package as a single entity while also saving
disk storage. The Java Archive (JAR) format also provides a mechanism for grouping
class files into a single entity for shipping over a network connection. It too is
based on the zip file format, although the capability of compressing members of the
archive does not appear to be used by Sun when distributing their class file libraries.
If the compression capabilities of the zip file or JAR file format are used, it should
not be forgotten that the zip file or JAR file is constructed from independently
created class files, and that individual class files can be extracted from the collection
and used. The files are compressed independently in order to facilitate extraction
and replacement of a single file. Consequently, no benefit to compression performance
is obtained by combining several small files into a single archive.

A Java program is normally executed by invoking the Java interpreter, specifying
to it the class file where execution is to begin. A less common alternative, but one
that is growing in popularity as JIT compiler technology develops, is to translate
the bytecode of each method into native code when it is invoked for the first time.
For a stand-alone application, execution begins at a standard method named main;
for applets, the class file has to implement other standard methods. While the
program executes, it will occasionally make a reference to a class type defined in
another file and which has not been previously accessed. In this case, the correspond-
ing class file must be dynamically loaded before execution can continue. For a
program invoked as an applet from a web browser, dynamic loading will typically
require that the class file be fetched from a host computer elsewhere on the network.

Regardless of the architecture of the client computer where the Java program is
to run, a class file always has the same format. The instructions in the class file
are instructions for a Java Virtual Machine (JVM).2 The client computer would
execute the class file either by using an interpreter for the JVM or a JIT compiler.
However, to maintain architecture neutrality, JIT translation is performed on the
client computer. The class file is in the standard format and not in native code form
when it is fetched over the network.

A slightly simplified picture of the overall layout of a class file is shown in
Figure 1. What should be observed from the picture is that the class file is organized
as a series of sections. One section in particular, theMethods Section, is itself
organized as a series of method entries, where each entry is itself subdivided into
sections. We explain the structure of some of the more important sections below.

The Constant Pool

Constants occurring in a Java source code file are converted by the compiler into
entries in the constant pool. The compiler may also create many additional entries
for constants which do not explicitly appear in the source code but which are needed
at execution time. As represented in a class file, each entry in the constant pool
consists of a tag byte followed by a group of bytes that contain the value of the
constant. For example, a UTF8 string constant containing 10 characters would be
stored as a 13-byte entry in the constant pool. The first byte is a tag with value 1,

1256 r. n. horspool and j. corless

Figure 1. Class file layout

the next two bytes hold the string length, and the following 10 bytes hold the
characters of the string constant.

The constant pool produced for the small sample program ofFigure 2 is shown
in Figure 3. Each entry is written as a tag name followed, in square brackets, by
the additional information required for that tag.

The relatively large size of the constant pool compared to the original program
should be noted. Many field names, class names, and type signatures are included
as character strings.

Figure 2. A sample Java source file

1257compression of java class files

Figure 3. Constant pool entries

The Methods Section

Each entry in the Methods Section is a variable-length structure that describes
one method in the class. In addition to some information about the class (its name,
access permissions, etc.), the entry normally contains both aCode attribute and an
Exceptionsattribute. The Code attribute contains an array of the bytecode that is to
be interpretively executed by the JVM when this method is invoked. It also includes
a table providing information about exception handlers in the code and, potentially,
a LineNumberTableand a LocalVariableTablewhich would enable a debugger to
relate the bytecode and the local variables of the method to its source code. The
Exceptions attribute is normally small.

A COMPRESSED ‘WIRE’ REPRESENTATION FOR JAVA?

A recent paper4 describes an approach that compresses intermediate code from the
lcc C compiler to as little as 21 per cent of the corresponding executable code for
the SPARC architecture. This is a compression rate of 4·9 to 1. At first sight, it
would appear that a similar approach should be effective for Java. The Class file
format is similar in nature to the intermediate code, or IR code, generated by the
front-end of a conventional compiler.

The ‘wire’ format for C code is explained in Ref. 4. It is based on a heuristic
tree pattern matching method for compressing IR code that is described in Ref. 10.
It involves splitting the sequence of tree patterns into separate streams and then
applying three different compression methods to the streams—Move-To-Front enco-
ding, Huffman coding and gzip compression.

If we were to develop a similar approach for Java, we would need to re-engineer
the Java compiler so that it generates trees instead of the linearized byte code and

1258 r. n. horspool and j. corless

where constants appear as leaves in those trees instead of having been separated out
into a special Constants section. In principle, it should be possible though inefficient
to construct such trees from the information in the Class file.

The reason why we consider such an approach to be unappealing however is
provided by the compression results reported in Ref. 4. These results are reproduced
in Table I. As can be seen, wire format achieves its reported 4·9 to 1 compression
ratio only on the largest file. For the smallest of the three files reported in the
paper, the compression ratio is worse than that produced by gzip. This file has an
uncompressed size of 60 KB, which is already much larger than the average for
Java Class files. Consequently, we conclude that a Java wire format would rarely
achieve better compression than gzip. The tailored approach that we have developed
invariably achieves better compression than gzip.

DEVELOPING A TAILORED SOLUTION FOR JAVA CLASS FILES

Our review of the structure of the class file should have brought out the importance
of the constant pool section. First, every class file will almost necessarily include
many ‘standard’ character strings containing names and type signatures for methods
in the Java class libraries. These strings will have a major influence on small class
files, and the class files in package libraries do tend to be small. Second, the other
sections of the class file all contain indexes into the constant pool. The net result
is that the constant pool occupies 50–90 per cent of the entire file size when
measured on a test collection of about 1000 class files. A chart that shows the
contributions of the constant pool to the total file size is shown inFigure 4. The
chart should be read as follows: the height of the column centred around 0·7, for
example, represents the number of class files in our collection where the constant
pool occupied between 65 per cent and 75 per cent of the whole file, i.e. 380 of
our 1000 class files had constant pools that represented between 65 per cent and 75
per cent of the whole file.

Another important observation is that character string constants dominate the
constant pool. These are strings represented in the UTF8 format. Each string is
represented by a two-byte length immediately followed by the bytes that comprise
the string constant. Together, the string constants account for about 40–80 per cent
of the entire file size.Figure 5 graphically shows the size contribution fo UTF8
strings to the overall class file size. It should be abundantly clear that a good
compression scheme for Java class files would have to perform well on UTF8
constant strings.

After the constant pool, we found the next most significant component of the
class file to be the code attribute.Figure 6 shows the contribution of bytecode to
the overall class file size in our experimental measurements.

Table I. SPARC code compression reported by Ernstet al.

Executable file Original size Gzipped size Wire code size

lcc 315,636 75,928 64,475
gcc 1,381,304 380,451 287,260
agrep 61,036 15,936 16,013

1259compression of java class files

Figure 4. Distribution of constant pool contributions

Figure 5. Distribution of UTF8 string constant contributions

The third most important component of the class file is the LineNumberTable
Atribute. It is not necessarily present in a class file because it is needed only for
debugging and error reporting. If the table is present, it holds one entry for every
time the line number of the corresponding source code changes when making a
sequential scan through the bytecode array. Its size should be roughly proportional
to the bytecode array size.

The other components of the class file did not make significant contributions to

1260 r. n. horspool and j. corless

Figure 6. Contribution of Bytecode to class file size

overall file size in our experimental measurements. We therefore do not consider it
necessary to provide tailored compression schemes for them.

A general compression program such as gzip is lossless in the sense that a
decompressed file will beidentical to the original file. A key observation is that a
compression program for Java class files does not need to be perfectly identical to
the original. It is good enough if the decompressed fileexecutesin the same way
as the original. That is, we only need to preserve semantic equivalence and not textual
equivalence between the two files. For example, one of our biggest improvements to
space efficiency comes from reordering the constant pool. As long as all indexes
into the constant pool are adjusted to reflect the new order, the bytecode should
execute in exactly the same way as before.

We note that re-ordering the constant pool may cause the bytecode component of
the class file toincreasein size. This is because the LDC (load constant) instruction
has an operand which is a one byte index into the constant pool. If re-ordering
should cause a constant used as an operand of LDC to move out of the first 256
positions in the constant pool, then the wide form of the instruction, LDCW, must
be used instead and that occupies more memory. However, the risk is worth taking.
In our experiments, the effect was observed only rarely and caused only tiny
increases in the size of the decompressed file.

We now explain our transformations on the significant parts of the class file.

Constant Pool Entries

Our initial transformation is to reorder the entries of the constant pool so that all
entries of the same type are grouped together and so that UTF8 strings are sorted
by their lengths. The result of this reordering on the example constant pool of
Figure 3 is shown inFigure 7.

There are three important benefits from the reordering. First, we no longer need

1261compression of java class files

Figure 7. Reordered constant pool entries

to associate a tag byte with each entry when outputting the constant pool in its
compressed form. The decoding program needs to know only how many entries
there are of each type in order to reconstruct a constant pool that contains the
proper tag bytes. Thus, the compression program outputs a simple count of how
many entries there are of each type before outputting the entries of that type. We
used a start-step-stop code with parameters (1, 3, 16) to encode the count. (Start-
step-stop codes are variable-length codes where small integers are encoded in a few
bits while larger integers require more bits for their encoding. The scheme is
explained in more detail below.) Since there are so few counts to encode in each
class file, the choice of the particular encoding scheme is not critical.

The second benefit comes from encoding constant pool entries that contain
references to other constant pool entries. For example, an entry of type Fieldref is
normally coded as a tag byte followed by two 16-bit indexes. The first index always
references a constant pool entry of type Class and the second always references an
entry of type NameAndType. Since our reordered constant pool has grouped all the
Class and NameAndType entries together, we can replace the first index with a
number that represents the position within the group of Class entries, and similarly
for the second index. These relative indexes will almost always have much smaller
values than the original index numbers and we can therefore encode them using
fewer bits. We encoded each index into the group of Class entries using a fixed-
length binary code withlogNClass bits, whereNclass is the number of entries of type
Class in the constant pool.

The third benefit is that reordering the UTF8 strings into order of increasing
length means that we can encode the string lengths in a more efficient manner. If
we look at an arbitrary string constant, other than the first, inFigure 7, we can see
that its length is almost always identical to the length of the preceding entry or is

1262 r. n. horspool and j. corless

only very slightly longer. In other words, if we encode the length of a string as the
difference between its length and that of the preceding string, we will be encoding
much smaller numbers. Encoding differences rather than the values themselves is
known as delta coding. Since a typical class file contains relatively many string
constants, it is worthwhile to devise a scheme for encoding the deltas (differences)
as efficiently as possible. To that end, we determined the distribution of string length
deltas for our collection of class files. We then determined which start-step-stop
code matched that distribution best. The result is shown inFigure 8. The solid line
shows the distribution of delta values; the dashed line shows what the distribution
should be to perfectly match the (0, 1, 16) start-step-stop code that we picked as
being the closest match.

After extracting and encoding the length prefixes, the group of string constants
becomes a block of text that contains a substantial amount of repetition. (Observe,
for example, the repetition of the substring ‘java’ inFigure 7.) This block of text is
well-suited for standard text compression algorithms. For convenience, we used the
ZLIB library functions11,12 to compress the text. ZLIB implements the same com-
pression algorithm as used in gzip, a method that is very similar to thedeflate
compression method supported in the zip file format.9 The maximum compression
option for ZLIB/deflate was used here, as in all our uses of this compression method.

Other kinds of entries in the constant pool, such as integer or floating-point
constants, occurred so infrequently in our sample files that there was very little
benefit from devising special coding schemes for them. We therefore left their
representations unchanged.

Figure 8. Distribution of delta string lengths

1263compression of java class files

Code Attribute

The bytecode part of the class file contains the patterns of JVM instructions
generated by the Java compiler for the constructs in the source program. Unless the
compiler is sophisticated and optimizes these patterns extensively, there will necessar-
ily be repetitions of the coding patterns. However, we were unable to find a fast
and effective way to exploit these patterns. It would be easier and preferable for
the compiler to generate such patterns in a compact form directly, rather than having
to rediscover the patterns by analyzing the bytecode. Such is the approach of the
Slim Binariesformat of Kistler and Franz.13

In keeping with our desire to preserve the existing bytecode format, we chose to
perform only two simple transformations on the bytecode and then apply the ZLIB
compression algorithm11,12 to it. The first transformation was to separate the opcodes
and the operands into two separate arrays. By separating out the opcodes, any
repeated patterns of opcodes will become apparent and amenable to compression by
a general-purpose method.

The second transformation concerned operands of branching instructions. The
operands of branching instructions are the addresses of other instructions in the
bytecode array for the method being executed. They are normally implemented as
2-byte offsets. For example, if index positions 103–105 of the array hold the
ifnonnull branching instruction, and its target is an instruction at index position 124,
then bytes 103 and 104 will hold the value 21 (computed as 124–103). Such a
representation is redundant because not every position in the bytecode array represents
the start of an instruction—many JVM instructions occupy two or more bytes. We
eliminated the redundancy by replacing byte-offsets with instruction-offsets in our
compressed file format.

Following the re-encoding of all instruction-relative offsets, we separately compress
the two arrays created from the bytecode using the ZLIB routines.

LineNumberTable Attribute

Each entry in the LineNumberTable contains a code array index and a correspond-
ing source statement number. The indexes can only refer to the starts of JVM
instructions. Therefore, space can be saved by converting these indexes into instruc-
tion numbers. Further compression is achieved by using delta coding. Both the
instruction numbers and the statement numbers form slowly increasing sequences in
our collection of sample class files. Presumably a sophisticated Java compiler could
re-order code and thus break the property that statement numbers only increase
through the code array; however, statements would be likely to be moved in groups
and delta coding would still achieve good results. We used (2, 2, 16) start-step-stop
codes for both the instruction number differences and statement number differences.

Start-Step-Stop Codes

We make extensive use of start-step-stop codes6 to encode various kinds of
integers in our compressed class files. Such codes have the general property that
small integers receive shorter codes than large integers. The codes are generated in
a systematic manner that permits rapid conversions between an integer and its
encoded representation.

1264 r. n. horspool and j. corless

The codes have three parameters which control the range of integers that can be
represented and the rate at which the bit string encoding grows in length. The
encoding would be optimal if the range exactly matches the range of numbers that
we need to represent and if the number of bits used to encode an integerk is
logarithmically related to the frequency with whichk needs to be encoded. That is,
if len(k) is the number of bits used to encodek, and if Freqk is the frequency of
occurrences ofk, then we would desire that

len(k) 5 2log(Freqk)

should hold. In practice, we can only choose a start-step-stop code that approximately
matches the frequency distribution. Huffman coding6 will usually produce better
compression, but the compression and decompression algorithms are more compli-
cated and require that a coding table be provided.

The underlying number representation used by a start-step-stop code is the usual
binary. However, the encoder and decoder must agree on how many bits comprise
the binary number. Rather than using a fixed, predetermined, number of bits, the
start-step-stop code prefixes the binary number with a code that specifies the number
of bits in the binary part. This prefix code is implemented as a unary number; unary
being a scheme that can be decoded without knowing the number of bits in advance.
For example, the unary code for the integer 5 is 111110, constructed as five 1-bits
and terminated by a 0-bit. If the unary number ism, then the number of bits in the
immediately following binary part of the code isa + b 3 m where a is the start
parameter andb is the stop parameter. The stop parameterc is the maximum value
that the unary prefix is allowed to encode. Knowledge of this value is used to
optimize the way in which the unary code is written (its final 0 bit can be safely
dropped). As an example, the table of start-step-stop codes for (1, 2, 5) coding is
shown in Table II. To make the codes easier to interpret, the prefix part of each
code is underlined.

EXPERIMENTAL RESULTS

A C implementation of our tailored compression approach was programmed. We
named this programclazz. Compression results for some representative class files

Table II. (1,2,5) Start-Step-Stop codes

Integer Code Integer Code

0 0 0 8 10 110
1 0 1 9 10 111
2 10 000 10 11 00000
3 10 001 11 11 00001
4 10 010 12 11 00010
5 10 011 % %

6 10 100 40 11 11110
7 10 101 41 11 11111

1265compression of java class files

Table III. Compression results for representative class files

File Original size ZLIB deflated size bzip2 size clazz size

AudioClip.class 233 184 225 95
Component.class 24,622 11,154 11,269 10,050
Enumeration.class 261 203 254 107
HashTableEntry.class 630 404 458 229
Integer.class 3,733 1,919 2,113 1,610
Object.class 1,452 787 923 576

are shown inTable III. In this table, we compare the compression of our clazz
program against two general-purpose text compression programs—thedeflatemethod
of the ZLIB library (with maximum compression selected as an option) and bzip2.
The ZLIB program is relatively fast and could therefore be considered as a good
candidate for compressing Java class files. In this table, we show the results for
some of the largest files as well as for some of the smallest files. We can observe
that ZLIB and bzip2 perform better on large class files but quite poorly on small
files, where they have little opportunity to adapt to the file characteristics. Our clazz
program, on the other hand, achieves significant compression for all file sizes and
always outperforms both competitors. Its better performance with small file sizes
is marked.

Compression results for two collections of class files are shown inTable IV. Both
class file collections were taken from the Metrowerks Codewarrior distribution. The
first 50 classfile members of the Swing/Rose library and the first 128 members of
the standard Java class library were used. The files were compressed separately.
Again, clazz outperformed the ZLIB deflate method and bzip2 by a significant
margin. Expressed as compression ratios, clazz is achieving a reduction to 35–38
per cent of the original size, versus 46–51 per cent for ZLIB and 51–56 per cent
for bzip2.

Since the clazz program applies a variety of compression methods to different
components of the class file, it is interesting to observe how well each component
is compressed. We observed the following:

I Tag bytes attached to entries in the constant pool accounted for 2–6 per cent
of the size of our sample class files. Our reordering of the entries and replacing
the tags with counts, using start-step-stop codes, reduced the contribution of
tags to insignificance.

Table IV. Compression results for collections of class files

Library Average Sizes (in bytes)

Original file ZLIB/deflate bzip2 clazz

50 members of Rose class library 4047·2 1881·8 2063·6 1431·5
128 members of MW class library 2405·5 1221·9 1354·7 920·6

1266 r. n. horspool and j. corless

I The length fields of UTF8 strings were reduced from 2 bytes to an average of
2·7 bits, i.e. to 17 per cent of their original size.

I The entire constant pool was reduced, on average, to 31 per cent of its original
size, even though we made no attempt to compress entries for integer constants
or floating-point constants.

I A simpler method to compress the constant pool would be to reorder the entries
and remove the superfluous tag bytes, as explained above, and then apply the
ZLIB compression routine. This achieves somewhat worse compression than
that produced by our more complicated approach. For example, the file
Integer.class which is compressed to 1610 bytes with our method would be
compressed to 1761 bytes instead. We consider this difference to be worth the
price of the more complicated method.

I Our attempts to compress the bytecode arrays were successful only for larger
class files. In many cases, methods contained fewer than 20 bytes of bytecode.
On average, each method had its bytecode reduced to 59 per cent of its original
size. The best compression, observed for those methods with the most bytecode,
reduced the bytecode to 26 per cent of its original size.

I The LineNumberTable attribute, when present in the class file, was compressed,
on average, to 33 per cent of its original size. (Production code would not
normally contain this attribute.)

I Reordering the constant pool and making corresponding changes throughout
other sections of the class file indeed has no effect when executed by the JVM.
Spot checks with several files yielded no discernible difference in behaviour at
execution time.

Execution times for compressing and decompressing representative class files are
shown in Table V. All times are measured in seconds and were obtained with a
120 MHz Intel Pentium CPU. Compression times are quite competitive with the

Table V. Execution times for compression and decompression

File Size (bytes) Execution times (in seconds)

ZLIB/deflate bzip2 clazz

AudioClip.class 233 0·049 0·577 0·049
0·019 0·385 0·025

Component.class 24,622 0·368 1·340 0·338
0·088 0·577 0·370

Enumeration.class 261 0·052 0·538 0·052
0·024 0·373 0·025

HashTableEntry.class 630 0·053 0·563 0·058
0·026 0·376 0·030

Integer.class 3,733 0·105 0·747 0·103
0·032 0·417 0·070

Object.class 1,452 0·057 0·598 0·067
0·026 0·381 0·037

1267compression of java class files

ZLIB library, while decompression times are only a little worse. Our timings could
undoubtedly be further improved with a more careful implementation. We observe
too that the decompression time could be greatly reduced by integrating decom-
pression with the Java class loader. One reason is that our compressed format has
eliminated the need for one step of the bytecode verification process that is performed
before the bytecode is executed. The verifier must check that every branch address,
every entry point and every exception handler begins at the start of a bytecode
instruction. Our compressed file format guarantees that this property must hold. A
second reason is that the decompression program re-constructs the class file as an
organized collection of data structures in memory as an intermediate step. This is
work that the class loader would also perform.

CONCLUSIONS

The class file compression strategy, implemented as the clazz program, achieves
much better compression than general-purpose compression programs while retaining
full compatibility with the JVM architecture. A key insight is that the reconstructed
file does not need to be identical to the original—it need be only semantically
equivalent. Our implementation is not as fast as the competing compression programs,
but that issue could be alleviated or eliminated if we were to re-implement the
program more carefully and if we could combine the decompression code with the
Java class loader.

A longer term and more drastic way of achieving greater compression would
involve a complete re-design of the class file structure of the JVM instruction set.
The slim binaries proposal,13 for example, provides a very compact alternative format
for bytecode along with the constants used in that code. Yet another possibility
would be to design a new JAR file format where members of the archive share a
common string constants table. Class files belonging to the same package typically
duplicate many string constants, representing member names and method signatures.

acknowledgements

Financial support from Natural Sciences and Engineering Research Council of Canada,
in the form of a scholarship for the second author and a research grant for the first
author, is gratefully acknowledged. Comments provided by the reviewers were
invaluable in improving the experimental results.

REFERENCES

1. K. Arnold and J. Gosling,The Java Programming Language,Addison-Wesley, 1997.
2. T. Lindholm and F. Yellin,The Java Virtual Machine Specification, Addison-Wesley, 1997.
3. M. Nelson and J.-L. Gailly,The Data Compression Book, 2nd Edition. M & T Books, 1995.
4. J. Ernst, W. Evans, C. W. Fraser, S. Lucco and T. A. Proebsting, ‘Code compression’,Proceedings of

PLDI’97, ACM Conference on Programming Languages, Design and Implementation, 1997, pp. 358–365.
5. T. L. Yu, ‘Data compression for PC software distribution’,Software—Practice and Experience, 26(11),

1181–1195 (1996).
6. T. C. Bell, J. G. Cleary and I. H. Witten,Text Compression, Prentice-Hall, 1990.
7. J. Seward, ‘The Bzip2 home page’, URL: http://www.muraroa.demon.co.uk and mirrored at

http://www.digistar.com/bzip2 in North America (1998).
8. J. Corless, ‘Compression of Java Class Files’,MSc Thesis, Department of Computer Science, University

of Victoria, 1997.
9. Info-ZIP ‘General format of a ZIP file’, Info-ZIP note 970311, URL:

http://www.cdrom.com/pub/infozip/doc/ (1997).

1268 r. n. horspool and j. corless

10. C. W. Fraser and T. A. Proebsting, ‘Custom instruction sets for code compression’, URL:
http://www.cs.arizona.edu/people/todd/papers/pldi2.ps (1995).

11. L. P. Deutsch and J.-L. Gailly, ‘ZLIB compressed data format specification, version 3.3’, URL:
http://quest.jpl.nasa.gov/zlib/rfc-zlib.html (1996).

12. The Zlib home page, URL: http://www.cdrom.com/pub/infozip/zlib/, 1998.
13. T. Kistler and M. Franz, ‘A tree-based alternative to Java byte-codes’,Technical Report 96-58,

Department of Information and Computing Science, University of California at Irvine, 1996.

	INTRODUCTION
	STRUCTURE OF JAVA PROGRAMS AND JAVA CLASS FILES
	The Constant Pool
	The Methods Section

	A COMPRESSED ‘WIRE' REPRESENTATION FOR JAVA?
	DEVELOPING A TAILORED SOLUTION FOR JAVA CLASS FILES
	Constant Pool Entries
	Code Attribute
	LineNumberTable Attribute
	Start-Step-Stop Codes

	EXPERIMENTAL RESULTS
	CONCLUSIONS

