

Code Hunt: Searching for Secret Code for Fun

Nikolai Tillmann
Judith Bishop

Microsoft Research
Redmond, WA 98052,

USA
nikolait,jbishop@

microsoft.com

R. Nigel Horspool

University of Victoria
Dept. of Computer

Science
Victoria BC V8W 2Y2,

Canada
nigelh@cs.uvic.ca

Daniel Perelman

Univ. Washington
Dept. of Computer

Science
Seattle WA 98195, USA

perelman@
cs.washington.edu

Tao Xie

University of Illinois at
Urbana-Champaign

Dept. Computer
Science

Urbana, IL, USA
taoxie@illinois.edu

ABSTRACT

Learning to code can be made more effective and sustainable if it
is perceived as fun by the learner. Code Hunt uses puzzles that play-
ers have to explore by means of clues presented as test cases. Play-
ers iteratively modify their code to match the functional behaviour
of secret solutions. This way of learning to code is very different to
learning from a specification. It is essentially re-engineering from
test cases. Code Hunt is based on the test/clue generation of Pex, a
white-box test generation tool that uses dynamic symbolic execu-
tion. Pex performs a guided search to determine feasible execution
paths. Conceptually, solving a puzzle is the manual process of con-
ducting search-based test generation: the “test data” to be generated
by the player is the player’s code, and the “fitness values” that re-
flect the closeness of the player’s code to the secret code are the
clues (i.e., Pex-generated test cases). This paper is the first one to
describe Code Hunt and its extensions over its precursor Pex4Fun.
Code Hunt represents a high-impact educational gaming platform
that not only internally leverages fitness values to guide test/clue
generation but also externally offers fun user experiences where
search-based test generation is manually emulated. Because the
amount of data is growing all the time, the entire system runs in the
cloud on Windows Azure.

Categories and Subject Descriptors D.2.5 Testing and Debug-
ging, D.3.4 Parsing, K.8.0 Games

General Terms Algorithms, Experimentation, Human Factors,
Languages, Verification.

Keywords Games for learning, white box testing, symbolic ex-
ecution, data-mining, hint mechanisms, source translation, Pex.

1. INTRODUCTION

1.1 Background – Pex4Fun

Code evaluator systems are very popular, with the growth in stu-
dent numbers and the popularity of MOOCs. These systems work
on the basis of a problem specification and a set of test cases to
establish if the student has achieved an acceptable program.

Several years ago, we released Pex4Fun www.pex4fun.com
which did the opposite: presenting an empty slate to the user and a
set of constantly changing test cases [4]. To solve a puzzle in
Pex4Fun, the player iteratively modifies code to match the func-
tional behavior of a secret solution. The player’s code modification
is guided by a set of test cases. These are automatically generated
by a white-box testing tool called Pex [3] to show under what sam-
ple inputs the player’s code and secret code have the same outputs
and have different outputs, respectively. To compare two programs,
a new meta-program is generated that invokes both programs. The
meta-program checks if given the same inputs, both programs pro-
duce the same result.

As a state-of-the-art implementation of dynamic symbolic exe-
cution [1], Pex conducts a search through the universe of feasible
execution paths of the meta-program. This search is guided by fair-
ness heuristics involving different code coverage criteria, and by
fitness functions [5] to prefer branches that are most promising to
eventually lead to previously uncovered code. Pex uses a constraint
solver to determine if any potential path is feasible, and to compute
test inputs that satisfy the path condition

Checking a puzzle can be viewed as the manual process of con-
ducting search-based test generation: the “test data” to be generated
by the player is the player’s code, and the “fitness values” that re-
flect the closeness of the player’s code to the secret code are the
clues (i.e., Pex-generated test cases). When solving a puzzle, the
player attempts to modify the code to improve two “fitness values”:
reducing the number of failing test cases while increasing the num-
ber of passing test cases. The fun and learning effects are especially
augmented when the “fitness values” are only partially displayed to
the player: only sample (not all) test data generated by Pex are dis-
played as clues to the player. Thus, a player cannot solve a puzzle
by simply attempting to over-fit the partially displayed “fitness val-
ues” by hardcoding for input-output pairs.

Although Pex4Fun was, and is, very popular, we wanted to ex-
tend its capabilities as a game and investigate how far we could
retrofit the data that is mined to provide hints to the player. We also
wanted to bring the game to a larger audience with more languages.
Thus Code Hunt was born (Figure 1).

Code Hunt differs from Pex4Fun in several ways: It uses a ver-
sion of the Pex4Fun backend that we adapted to run in Windows
Azure where it automatically scales to support an arbitrary number
of users. The Code Hunt website provides an experience that is ex-
clusively focused around the search-based game play idea, while
the core experience of Pex4Fun is to showcase the capabilities of
the Pex engine. Code Hunt supports Java in addition to C#. We are
also in the process of deploying into Code Hunt a system that will
provide hints when the system detects that a player is stuck.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SBST'14, June 2 – June 3, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2852-4/14/06... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SBST’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2852-4/14/06...$15.00
http://dx.doi.org/10.1145/2593833.2593838

23

1.2 Testing and Learning

Learning to code by solving a puzzle is not the same as learning to
code by writing to a specification. There are many competitions
that exist where students pit their wits against each other – and
against the clock – to create a solution to a defined problem. This
kind of coding is similar to what they encounter in courses or later
in their careers. Code Hunt is different in that learning to code is a
by-product of solving a problem which is presented as pattern
matching inputs and outputs. The fun is in finding the pattern.

Fun is seen as a vital ingredient in accelerating learning and
retaining interest in what might be a long and sometimes boring
journey towards obtaining a necessary skill. In the context of cod-
ing, there have been attempts to introduce fun by means of story-
telling [2], animation (www.scratch.mit.edu) and robots (e.g.
www.play-i.com). Code Hunt adds another dimension – that of
puzzles.

Figure 1. The opening screen of Code Hunt

Code Hunt represents a high-impact educational gaming plat-
form that not only internally leverages fitness values to guide
test/clue generation but also externally offers fun user experiences
where search-based test generation is manually emulated. In this
paper we describe how Code Hunt works and the steps we have
taken to maximize the fun aspects of the system. We go into some
detail on the use of different programming languages (C# and Java)
and our experience in designing puzzles. We explain how Code
Hunt is really one of a kind, and present some results based on an
early version of the system. Code Hunt is now freely available to
test in its new skin at www.codehunt.com.

2. OVERVIEW OF CODE HUNT

Code Hunt is a serious game where player write code to advance.
Code Hunt runs in any modern browser at codehunt.com; see Fig-
ure 1 for the splash screen. The built-in tutorial reveals the follow-
ing story:

Greetings, program! You are an experimental
application known as a CODE HUNTER. You,
along with other code hunters, have been sent
into a top-secret computer system to find, re-

store, and capture as many code fragments as
possible. Your progress, along with your fellow

code hunters, will be tracked. Good luck.

The game is structured into a series of sectors, which in turn contain
a series of levels. In each level, the players write code that imple-
ments a particular formula or algorithm. In what follows, a level
equates to a puzzle.

As the code develops, the game engine gives custom progress
feedback to the player. It’s part of the gameplay that the player
learns more about the nature of the goal algorithm from the progress
feedback. Figure 2 shows the feedback loop between the player’s
code in the browser and cloud-based game engine.

Figure 2. Gameplay

2.1 Sectors and Levels

As in any game, there are sectors and levels. The player can write
code in an editor window, using either C# or Java as the program-
ming language. This code must implement a particular formula or
algorithm – represented by a top-level function called Puzzle. The
function has some input parameters, and it returns a result. The
player has only one way to test if the current code implements the
goal algorithm: by pressing on a big “CAPTURE CODE” button.
Pressing this button causes a chain of events:

1. The code is sent to a server in the cloud.
2. The server compiles the code (including an optional Java-

to-C# conversion, as explained in Section 3)
3. The server starts an in-depth analysis of the code, com-

paring it to the goal algorithm.
4. The results are returned and shown to the player.

Figure 3 The Code Hunt main page, showing test results

The result will be either a compilation error, with information in
the bottom pane, or some mismatches or agreements with the goal
algorithm. Figure 3 shows the code on the left, and the mismatches
(red crosses) and agreements (yellow checkmarks) are shown on
the right. If the code compiles and there are no mismatches and only
agreements with the goal algorithm, the player wins this level – or
as the game puts it, the player “CAPTURED!” the code, as shown
in Figure 4.

Figure 4. After completing a puzzle, the player gets a score

The in-depth analysis returns each mismatch and agreement
with the goal algorithm in the form of a tuple (input, actual result,
expected result).While the actual and expected result are the same
when the player’s code is in agreement with the goal algorithm,

code

feedback

24

they are different when there is a mismatch. The player then in-
spects the mismatches and determines how to change the code to
make it more like the goal algorithm.

Some levels come with an English description of the goal, e.g.
“Can you sum the factorials between x and y?” In other levels, it’s
a guessing game: the player has to infer the goal algorithm from the
mismatches and agreements shown after pressing the “CAPTURE
CODE” button; in other words, the player’s task is to reverse-engi-
neer some algorithm, and write semantically equivalent code.

In Code Hunt’s basic world, the sectors are ordered by topics
such as “arithmetic”, “loops”, “conditionals”, “strings”, “cyphers”,
and so on. The sectors and the levels within them are ordered by
the difficulty of the topic area. Besides reflecting a natural progres-
sion in difficulty of the required programming constructs to solve
the sectors and levels, we also used data from the Pex4Fun platform
[4] to guide the ordering. There are some 1.4 million user submis-
sions that give us an objective assessment of the difficulty of each
problem.

After each level, the player is directed to immediately at-
tempt a slightly more difficult level, thereby maintaining flow. Fur-
thermore, the sectors except for the first one are initially locked.
Players have to complete enough levels in a given sector in order
to unlock the next sector. Figure 5 shows the list of sectors, most of
which are still locked.

Figure 5. The game's sectors, unlocked as the user progresses

2.2 Skill Ratings and Score

When the player successfully completes a level, the Code Hunt
game engine assigns a “skill rating” to the player’s code. The rating
is an integer 1, 2, or 3, and reflects the elegance of the solution,
measured by its succinctness (a count of instructions in the com-
piled .NET intermediate language). 1 indicates that the solution is
much longer than all other submitted solutions, 2 means about av-
erage, and 3 means significantly shorter.

The intention behind the skill rating is that it may motivate
players to keep tinkering in a particular level in order to improve
their code, thus greatly extending the gameplay time. This rating is
multiplied by a level-specific value that reflects the difficulty of the
level, resulting in the “score” for this level. Figure 4 shows the rat-
ing 1, and a score of 2 (implying a multiplier of 2 for this level),
after the player completed a level.

Players can track their progress via an accumulated total score
and the top 15 total players are displayed on a constantly changing
leaderboard.

3. ARCHITECTURE

Code Hunt is a true cloud-based system hosted in Windows Azure.
As shown in Figure 6, the player requests the page www.code-
hunt.com which is served from a front-end cloud app. If the player

chooses to log in, Windows Azure Active Directory Access Control
delegates authorization to one of the identity providers (Microsoft,
Facebook, Google, Yahoo). Once the player engages in any partic-
ular level, a back-end cloud app is invoked at api.codehunt.com.
The back-end exposes a publicly accessible REST-based service
API which performs the actual program analysis tasks, and also
persists user-specific data in Windows Azure Store. Guarded by an
OAuth v2 authorization scheme, the back-end is available for use
by other clients. We welcome other researchers who are interested
in using this platform for other research topics.

Figure 6. Architecture

Both the front-end and the back-end have been designed for
maximum scalability, dynamically increasing the number of cores
available to serve an arbitrary number of users.

To illustrate the need for scalability, consider that each con-
current user of Code Hunt who presses the “CAPTURE CODE”
button as part of the gameplay potentially causes a single core of
the back-end to be busy analyzing the submitted code for up to 30
seconds. Many cores are necessary to support the users at peak
times (entire classrooms), while very few cores may be needed at
other times.

4. SUPPORT FOR JAVA CODE

The Code Hunt website supports Java code by translating it into C#
source code. If sufficient programming resources had been availa-
ble, the ideal solution might have been to use a Java compiler that
has been retargeted to output .NET intermediate code instead of
Java bytecode. However that would still leave us with a major chal-
lenge – references to classes in the Java API.

Conversion from Java to C# at the source code level is the
easier direction because C# is close to being a superset of Java.The
j2cs translator performs the usual work of a Java compiler’s front-
end: it lexically analyzes the input, parses it, builds an abstract syn-
tax tree, and traverses the tree to build a symbol table. It performs
as little semantic checking as possible on the assumption that the
generated C# code will be checked by the C# compiler. The final
step is to traverse the tree and generate that C# code.

A few features of the Java language are very difficult to han-
dle. Generic methods and classes are one, another one would be the
enum type when used in its full generality. These relatively ad-
vanced features are not currently supported by j2cs on the assump-
tions that puzzles posed by Code Hunt will not require use of such
features, and that most users of Code Hunt will not be advanced
programmers.

The biggest challenge for providing a working translator was
the handling of the Java API. The java.lang package is fundamen-
tal to the language and much of it needs to be supported by j2cs.
For Standard Edition 7 of Java, the package contains 37 classes, 9
interfaces, 3 enum’s, 27 exception classes, and 23 error classes. If
we look at just the Math class in that package, it provides 54 static

www.codehunt.com

api.codehunt.com

Active Directory Access Control

Facebook

Microsoft

Yahoo

Google

Windows
Azure
Storage

25

methods and two static fields. Instead of undertaking the massive
effort needed to provide special-case translations for calls to each
one of the thousands of methods provided in the java.lang pack-
age, we have provided an extensible translation mechanism and
populated it with translations for the most common method calls
plus those needed for the Code Hunt puzzles.

The mechanism is to provide a collection of translation tem-
plates. There is one file for each class in the Java API which has
some translation support. That file is formatted as source code for
the Java class which implements the desired methods except that
the body of each method is C# code. Additional information needed
by the translator is provided in the form of Java annotations. Ex-
tracts from our template file named String.java appears below.

@CSRewrite(JavaPackage = "java.lang",

ClassName = "string", PartialClass = true)

public class String{

 …

@CSRewrite(Inline = true)

 public static String toString(int i){

 return i.ToString();

 }

 …

}

This template tells the translator that a Java expression like
String.toString(27) is to be replaced with the C# code
27.ToString().

Most calls to methods in the java.lang package have trivial
translations, just replacing a method name with a similar name. For
example, Math.sin(x) simply becomes Math.Sin(x) in C#.

There is a major caveat with this approach. The replacement
code is C# code, yet it has to be parsed as though it were Java code.
We are yet to hit a case where that restriction causes a problem,
although it could certainly happen.

5. EXPERIENCE IN DESIGNING PUZZLES

It is desirable to design puzzles that provide both fun and learning
experiences. We have designed over 300 puzzles as learning mate-
rials for introductory programming, and for an engaging game at a
contest at ICSE 2011 [4]. We also had experience of designing puz-
zles for a software engineering course to help students master the
concept of design patterns. We discovered that much care and
thought are needed when both fun and learning experiences are in-
tended.

While the basic game provides continuous feedback, some-
times users get stuck and don’t know how to proceed in the search
for a correct program. In order to avoid frustrated users who give
up, we have developed a hint mechanism to give additional infor-
mation. For any given incorrect program, using code synthesis
techniques, we can find a small code change that takes the program
closer to a correct program. The synthesizer’s search space is auto-
matically directed by examining other users’ attempts and solu-
tions, so that no manual specialization to each puzzle is necessary.
We then suggest the derived code change to the user.

Our hope is that this new hint mechanism will even out the
experience of Code Hunt for players from different backgrounds.

6. RELATED WORK

In the learning environment, there are many systems that evaluate
code. These all work by having a specification such as that on
www.TuringCraft.com “Given that an array of int named A has
been declared, assign 3 to its first element.” and running test cases
on the program. Students are familiar with this form of question; it
is regarded as work, which is boring at worst, useful practice at best.
Code Hunt might have exactly the same code hidden in one of its

puzzles, but the aura of mystery intrigues users and keeps their in-
terest.

In Code Hunt, the user has to perform the search-based game
play to derive a matching program. An obvious research question
is whether this search-based approach can be automated. Lakhotia
[6] applied a generic programming system to automate solving cod-
ing puzzles, using the previously existing Pex4Fun platform as a
backend. In one example, this system could fully automatically win
in 76.57 steps.

On a practical level some of the code evaluator systems adver-
tise that they run in the browser or in the cloud, but they actually
require deployment on a local machine (e.g. CloudCoder
www.cloudcoder.org needs two Linux servers). In contrast, Code
Hunt runs directly in any modern browser and is backed by cloud
execution in Azure.

Although the following comments from the community were for
the precursor of Code Hunt, Pex4Fun, we fully expect them to ap-
ply to Code Hunt:

HedonicPh0enix: The geekiest fun you can have
Gide0nSkye: Really cool app to help flex my programmer muscles
str8flushAKQJT, rated 10/10: First game of this type. Very impres-

sive.
JoshuaJEarl, rated 10/10: Really cool concept and good execution.

Like the code snippets and Intellisense.

Jace4Dana, rated 10/10: Probably the most fully featured app on any

mobile platform. Awesome idea and really intriguing imple-

mentation. Can't wait for later versions!!

7. FUTURE WORK AND CONCLUSIONS

Code Hunt represents a high-impact educational gaming platform
that not only internally leverages fitness values to guide test/clue
generation but also externally offers fun user experiences where
search-based test generation is manually emulated.

Code Hunt is a novel approach to build on serious search-based
testing for a very large community, that of coders, and especially
learning coders. Because the test cases are always changing, and
are built on the mined data, players get a fresh experience every
time. To code with the growing amount of data, the entire system
runs in the cloud on Azure.

Our first task is to get user feedback on the game aspect of Code
Hunt, and to improve that as required. Features we would like to
add include being able to set time limits for puzzles, for use in com-
petitions, tests, or lab sessions.

We would like to find out the current boundaries of what can be
checked in a puzzle in terms of language structures. We then want
to extend what can be checked by improving the underlying analy-
sis engine.

REFERENCES

[1] Godefroid, P., Klarlund, N., and Sen, K. DART: directed automated
random testing. In Proc. PLDI (2005), 213–223.

[2] Kelleher, C., and Pausch, R. F.: Using storytelling to motivate pro-
gramming. Comm. ACM, July 2007/Vol. 50, No. 7, 58-64.

[3] Tillmann, N., and de Halleux, J. Pex – white box test generation for
.NET. In Proc. TAP (2008), 134–153.

[4] Tillmann, N., de Halleux, J., Xie, T., Gulwani, S., and Bishop, J.,
Teaching and Learning Programming and Software Engineering via
Interactive Gaming. In Proc. ICSE (2013), 1117–1126.

[5] Xie, T., Tillmann, N., de Halleux, J. and Schulte, J., Fitness-Guided
Path Exploration in Dynamic Symbolic Execution, in Proc. the 39th

Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2009), IEEE, June 2009

[6] Lakhotia, K. En Garde: Winning Coding Duels Through Genetic Pro-
gramming. In Proc. ICSTW SBST (2013), 421 - 424

26

