Code Hunt: Context-Driven Interactive Gaming for
Learning Programming and Software Engineering

Nikolai Tillmann!, Jonathan de Halleux!, Judith Bishop!
Tao Xie?, R. Nigel Horspool®, Daniel Perelman*
1 Microsoft Research, Redmond, WA 98052, USA
2University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3University of Victoria, Victoria, BC V8W 2Y2, Canada
4University of Washington, Seattle WA 98195, USA
Email: nikolait, jhalleux, jbishop@microsoft.com
taoxie@illinois.edu, nigelh@cs.uvic.ca, perelman@cs.washington.edu

ABSTRACT

Code Hunt is a web-based serious gaming platform for players to
solve coding duels, a type of puzzle based on programming and
software engineering. In Code Hunt, a player iteratively modifies
code to match the functional behavior of a secret code segment.
The functional behavior is defined based on unit test cases shown
as input-output pairs. To guide players to modify the code segment,
Code Hunt provides feedback based on test generation through the
Pex engine. In Code Hunt, the way of writing code is very different
from the way in traditional software development since there are
no known requirements (either informally/formally documented or
existing in developers’ mind); the game aspect in Code Hunt is es-
sentially re-engineering from sample expected behaviors observed
from generated test cases. Various types of context exist in Code
Hunt including the duel and the test cases, as well as the player’s
history and any hints that are given. In this position paper, we
discuss how such context assists the players to solve coding duels
while offering the players learning and fun experiences.

1. CODE HUNT

Code Hunt (https://www.codehunt.com/)[5, 3]is a web-
based serious gaming platform where players write code to ad-
vance through levels. Code Hunt runs in the cloud on Windows
Azure, and can be played by players via any modern browser [1].
It is a significant extension of a serious gaming website Pex4Fun
(http://www.pex4fun.com/) [6, 7] by instilling more fun
and entertaining effects, adding hint generation, adding language
support to Java, etc. A player can play the Code Hunt game by
walking through a series of sectors, each of which further contains
a series of levels. In each level, the player modifies the given code
to solve a coding duel. Along the way of code modifications by the
player, Code Hunt gives customized feedback (adaptive to the code
modifications) to guide the player to make progress towards suc-
cessfully solving the coding duel. Figure 1 shows the user interface
of game playing in Code Hunt.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

< LEVEL: 60.04 B ATTEMPTS: 19 > WO = i

s B A e e e

v
o.)
X
v

— i

Figure 1: User interface of game playing in Code Hunt

In particular, in Code Hunt, the player is shown a player code
segment (in the form of a method with at least one method argu-
ment and non-void return), as displayed on the left hand side of
the screen (Figure 1), and is asked to iteratively modify such code
segment to match the functional behavior of the secret code seg-
ment not visible to the player. The functional behavior is defined
based on input-output pairs (with the method arguments as input
and method return as output). To guide the player to modify the
code segment, along the way, Code Hunt provides feedback as fail-
ing test cases (under what sample inputs the player code segment
and secret code segment produce different outputs) along with pass-
ing test cases (under what sample inputs the two code segments
produce the same outputs). Such feedback is displayed on the right
hand side of the screen as a table. To supply such feedback, Code
Hunt is based on test generation provided by Pex [4], a white-box
test generation tool that uses dynamic symbolic execution (which
explores feasible execution paths for achieving high code cover-
age).

2. TYPES OF CONTEXT IN CODE HUNT

We next describe various types of context in Code Hunt for guid-
ing a player in solving a coding duel while offering the player
learning and fun experiences. Figure 1 shows the following con-
text types annotated with numbers.

Earlier solved coding duels (annotated as 1 in the figure). A
coding duel can be designed to be dependent on a previous cod-
ing duel solved by the player already. For example, a “Factorial
digit sum” problem posted on the Project Euler website (https:
//projecteuler.net/problem=20)can be transformed to

® M rserTmves)

a coding duel C'; with the hidden functionality of “computing the
sum of the digits in the factorial number x! given number x”. In
addition, before this coding duel C is attempted by the player, an-
other related coding duel Cy can be designed for the hidden func-
tionality of “computing the factorial x! given number x”. The solu-
tion for solving coding duel Cy forms a stepping or constitute stone
for solving coding duel C;. Such type of context may be explic-
itly visible to the player (e.g., the coding duel C'; initially has the
player code segment displayed as the earlier player code segment
written by the player for solving coding duel Cj), or may be in the
player’s mind in an implicit way.

The secret code segment of the coding duel (annotated as 2 in
the figure). The secret code segment of the coding duel is intention-
ally hidden from the player, who aims to discover the functionality
of the secret code segment based on feedback iteratively. Such type
of context is not visible to the player before the player successfully
solves the coding duel. In other words, such type of context is in-
tentionally hidden from the player when the player is attempting to
solve the coding duel.

The playing history of the coding duel (annotated as 3 in the
figure). Typically the player makes a number of attempts (form-
ing the playing history of the coding duel) before the player suc-
cessfully solves the coding duel. The playing history details of the
coding duel are not displayed on the player’s user interface. Cur-
rently the player has to take notes of expected input-output pairs
(observed over iterations) either as comments or if-statements in
the player code segment or on a convenient place outside Code
Hunt. Note that the expected sample input-output pairs reported
by Code Hunt are customized to the code modifications made by
the player, and thus are different across different iterations. Such
type of context is not explicitly displayed to the player but lies in
the player’s mind.

The coding duel being modified by the player (annotated as 4
in the figure). When playing the Code Hunt game, iteratively the
player makes an attempt by modifying the coding duel and clicking
the “Capture Code” button to gather feedback. The coding duel
being modified by the player is displayed on the left hand side of
the screen. Note that only the latest version of the coding duel is
displayed. Such type of context is explicitly visible and displayed
to the player.

The input-output pairs reported to the player (annotated as 5
in the figure). The feedback that the player gathers is in the form
of input-output pairs, displayed as a table on the right hand side of
the screen. The input-output pairs are classified into two groups:
failing test cases where the outputs of the secret segment and the
player segment are different for the same inputs; passing test cases
where the outputs of the two segments are the same for the same in-
puts. Note that only the input-output pairs produced after the latest
click of “Capture Code” are displayed. As stated earlier, the ex-
pected sample input-output pairs reported by Code Hunt are differ-
ent across different iterations of clicking “Capture Code”; thus, the
player may want to take notes of observed expected input-output
pairs. Such type of context is explicitly visible and displayed to the
player.

The hint reported to the player (annotated as 6 in the figure).
Besides the input-output pairs displayed to the player, Code Hunt
sometimes also displays a hint to indicate which line of code the
player may want to modify in order to make progress towards solv-
ing the coding duel. Such hint can be generated in various ways,
e.g., analyzing the solutions successfully completed by other play-
ers for the same coding duel. Note that it is desirable to generate
hints that can guide players who struggle in solving coding duels
while not compromising the learning effect (or the competition pur-

pose when Code Hunt is used for contests). Such type of context is
explicitly visible and displayed to the player.

3. DISCUSSION

Example maintenance tasks in traditional software development
include feature addition or bug fixing, often accompanied with known
requirements for the feature to be added or the failing behavior to
be fixed. However, in Code Hunt, although the code modifications
on the given player code segment can be viewed as a maintenance
task, the corresponding requirements are not known. In fact, in
Code Hunt, the key for successfully completing a maintenance task
(i.e., solving the given coding duel) is to discover such require-
ments based on feedback given by Code Hunt. In Code Hunt, solv-
ing the given coding duel is not an ultimate goal; the ultimate goal
is to provide learning and fun experiences for the players when they
solve the given coding duel. Such main differences in Code Hunt
and traditional software development can help us make an analogy
between these two settings and compare their respective contexts.

Various types of context in software development have been pro-
posed by the research community. For example, a task context [2]
refers to “the information (a graph of elements and relationships of
program artifacts) that a programmer needs to know to complete
that task.” In Code Hunt, as a slightly different interpretation, rela-
tionships of program artifacts are on functional behaviors, referring
to the expected relationships of the inputs and outputs of the code
segment. However, in the traditional interpretation, relationships of
program artifacts are often on structural characteristics, referring to
program dependencies or calling relationships, etc. More broadly,
for software artifacts in traditional software development, some ex-
ample contexts include their change history (corresponding to the
playing history of the coding duel), requirements (corresponding
to the secret code segment of the coding duel, and implicitly the
input-output pairs reported to the player), dependent tasks (corre-
sponding to earlier solved coding duels), discussions and knowl-
edge exchanges about those tasks and artifacts (corresponding to
the hint reported to the player).

Acknowledgments. Tao Xie’s work is supported in part by a Microsoft Re-
search Award, NSF grants CNS-1434582, CCF-1434590, CCF-1434596,

CNS-1439481, CCF-1349666, CCF-1409423, and NSF of China No. 61228203.

4. REFERENCES

[1] J. Bishop, J. de Halleux, N. Tillmann, N. Horspool, D. Syme,
and T. Xie. Browser-based software for technology transfer. In
Proc. SAICSIT, Industry Oriented Paper, pages 338-340,
2011.

[2] M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proc. FSE, pages 1-11, 2006.

[3] N. Tillmann, J. Bishop, N. Horspool, D. Perelman, and T. Xie.
Code Hunt: Searching for secret code for fun. In Proc. SBST,
pages 23-26, 2014.

[4] N. Tillmann and J. de Halleux. Pex — white box test generation
for .NET. In Proc. TAP, pages 134-153, 2008.

[5] N. Tillmann, J. de Halleux, T. Xie, and J. Bishop. Code Hunt:
Gamifying teaching and learning of computer science at scale.
In Proc. Learning at Scale, pages 221-222, 2014.

[6] N. Tillmann, J. de Halleux, T. Xie, S. Gulwani, and J. Bishop.
Teaching and learning programming and software engineering
via interactive gaming. In Proc. ICSE SEE, pages 1117-1126,
2013.

[7] T. Xie, N. Tillmann, and J. de Halleux. Educational software
engineering: Where software engineering, education, and
gaming meet. In Proc. GAS, pages 36-39, 2013.

