
Static Analysis of PostScript Code

R. Nigel Horspool and Jan Vitek

Dept. of Computer Science, University of Victoria
P.O. Box 3055, Victoria, BC, Canada V8W 3P6
nigelh@csr.uvic.ca jvitek@csr.uvic.ca
 Stack-based languages, such as PostScript, present a ma-
jor challenge to static analysis techniques because of their
almost unlimited polymorphism. We introduce a regular ex-
pression notation that is used to represent allowed combi-
nations of types on the stack at different points in a Post-
Script program. Our abstract interpretation algorithm may
then be used to perform static type analysis. The analysis
has applications in detecting probable errors in the Post-
Script code or, ultimately, in permitting full or partial com-
pilation of portions of code.

1. Introduction

The PostScript1 language has become prominent as a
device-independent programming language used to control
high-resolution graphical output devices. It is an example
of a stack-based language where every operator obtains its
arguments by popping values from a stack and pushes its
result(s) back onto that stack. Other stack-based languages,
such as Forth and the command language of the UNIX dc
(desk calculator) program, exist. The techniques described
in this paper should be applicable to most other stack-
based languages too.

The PostScript language provides a challenge to static
analysis techniques because it is inherently polymorphic.
Not only can a function accept arguments with varying
types, but a function can accept differing numbers of argu-
ments. For example, it would be an easy matter to program
a function SumN whose first argument is an integer N that
specifies that N more numeric arguments are to be totalled
and the sum returned as the function result. Thus, one
example call might be

123 -23 100 3 SumN

which would leave a result of 200 on the stack. Another
sample call might be

1.5 2.3 2 SumN

and that would leave a result of 3.8 on the stack. There are

no type declarations in PostScript nor any declarations to
indicate the number of parameters that a function expects.
The only way to discover the argument structure of a func-
tion like SumN is to trace through and analyze its code. By
observing the effect on the stack and by inference of the
types of values popped from the stack, it may be possible
to deduce a type signature for SumN. In general, the type
inference problem for a language like PostScript is unde-
cidable. But, as in all problems where abstract interpreta-
tion techniques are applied, it is possible to approximate
and the approximate results are often adequate.

We have chosen to concentrate on type analysis. Our
goal is to deduce the patterns of types for values on the
stack that exist before and after each operation in a Post-
Script program. Although we currently handle only a sub-
set of PostScript and our techniques are (intentionally)
approximate in nature, we consider the results to be highly
encouraging. Further work to extend the language subset
and investigation of alternative analysis functions and
alternative representations for stack states is planned.
Although abstract interpretation techniques [1] have been
used for type inference in functional languages and in Pro-
log, they have not, to our knowledge, previously been
applied to a stack-based language. Stack-based languages
introduce a number of interesting problems that do not
have obvious solutions. Our initial implementation of a
static analyzer successfully performs type inference for a
subset of PostScript, even if functions accept varying num-
bers and types of arguments, as with the SumN example,
above.

It might be argued that PostScript was never intended to
be a normal programming language where programs are
written by people. More usually, PostScript code is auto-
matically generated by text formatting or graphics drawing
software. Furthermore, the PostScript code is intended to
be executed once only, rendering an image on the output
device, and then discarded. Why, therefore, should we be
interested in analyzing and verifying the correctness of
PostScript code? Why not just execute the code and find

1. PostScript is a trademark of Adobe Systems Incorporated.

out if it works as intended? If one actually looks at the
PostScript code generated by software, there is typically a
fixed structure. An initial segment of code containing a
standard collection of functions is defined. Following this,
the actual formatted text or numeric descriptions of graph-
ics images are supplied as arguments in calls to the previ-
ously defined functions. The functions are not automati-
cally generated (formatting software is not yet that clever),
they have been pre-programmed by a human programmer
and they are simply copied into every PostScript file gen-
erated by the software. Since these functions will be used
every time the software sends its output to the graphics
device, it is vitally important that they be efficient and be
correct. Static analysis can help to achieve both goals.
And, although PostScript was designed as a language to be
generated by software rather than people, there are indeed
many programmers who use PostScript to implement
graphical user interfaces (such as in the NeWS system
from SUN Microsystems). These programmers should
benefit from a tool that can direct their attention to possible
errors in their code. A longer term goal of the research is in
the development of optimization techniques and, perhaps,
a form of compilation for PostScript code.

The innovative feature of our work is in the use of a
restricted form of regular expression notation to describe
combinations of types on the stack. These regular expres-
sions represent particular values in the abstract domain
used in the analysis. We will then show how abstract inter-
pretation may be applied in both the forwards and the
backwards directions to perform type inference on collec-
tions of PostScript functions and to derive appropriate type
signatures. As a direct consequence of this analysis it is
possible to identify regions of the code that are definitely
erroneous (in the sense that if control should ever enter one
of these regions then abnormal termination of the program
is certain to follow). A similar analysis could also identify
those regions of the program that might be erroneous. As a
preview of the kind of analysis that we perform, consider a
PostScript program that performs the following series of
six actions:

1 Push a string constant.
2 Push n integers.
3 Push the integer n.
4 Invoke the SumN function.
5 Pop and output an integer (the result from

SumN).
6 Pop and output a string.

In a forwards analysis of this code sequence, assuming
an initially empty stack, we can derive the following
sequence of stack states:

Position i corresponds to the stack state immediately
following step number i in the code sequence, with posi-
tion 0 corresponding to the initial stack state. Each stack
state is written as a regular expression (RE) where the
rightmost symbol generated by the RE corresponds to the
topmost stack element. Observe that immediately after the
call to SumN in step 4, the analysis shows the possibility
that additional integers remain on the stack below the func-
tion result. Unless the stack states retain the value of n and
unless the analysis uses this value to track the number of
times that SumN pops an argument integer, we cannot be
sure that SumN pops all the integers that were supplied.
However, when the analysis reaches step 6 where a string
needs to be popped, the analysis deduces that the I* com-
ponent of the pattern must actually be empty for the pro-
gram to be correct. Backwards analysis may now be used
to make the stack state descriptions more precise. Starting
with the result stack state, ε, at step 6, the analysis deduces
that the stack state should have been S at step 5. Then, pro-
ceeding one step further back, it deduces that the state
should have been SI at step 4. (The other stack states are
not changed.)

Abstract interpretation is concerned with static determi-
nation of certain dynamic properties of programs. In other
words, abstract interpretation provides information on run-
time properties of a program. Following the work of
Cousot [3], many practical frameworks have been speci-
fied and implemented, notably in the field of functional
programming to perform strictness analysis or in-place
update analysis, and in PROLOG for mode and determi-
nacy analysis. Abstract interpretation has also been used
for automatic parallelization of imperative [5] and func-
tional [6] programs. The technique relies on a mapping
from the semantics of the original program with respect to
a certain property into approximate semantics. Approxi-
mation is inevitable since any non-trivial analysis would
be based on dynamic control flow patterns and those are
uncomputable.

A correct abstract interpretation will always find an
answer which includes the true answer. Equivalently, we
say that the approximation is conservative and that the
analysis procedure is guaranteed to terminate.

2. The abstract model

An interpreter for the PostScript language deals with typed
values. Amongst the simple values that it must handle are
integers (such as 1, 99, -23), floating-point numbers (such
as 1.5, -3.0e-5), booleans (true and false), and strings (such
as "abc"). The model used for static analysis represents
these values by codes that denote only their types. We use
I to stand for integer values, R for floating-point values, B
for boolean values and S for string values. The effect of a

Pos 0 1 2 3 4 5 6

State ε S S(I)* S(I)*I S(I)* S(I)* ε

function or a block of code in PostScript can be understood
only in term of its effect on the value stack. In the course of
execution of an actual PostScript interpreter, the entire
contents of the stack might, at one execution point, be

<5.0, "abc", -45, 123>

where the integer 123 is at the top of the stack. We repre-
sent this stack by the type code sequence RSII . Since
functions and operators2 may be polymorphic, we need to
use sets of stack states when describing the effect of a
function or operator on the stack. The static semantics of
our Postscript subset can be expressed in terms of opera-
tions on elements of the lattice L(S*), defined as follows.

Definition Let S be the set of type codes and S* be the set
of type code sequences. L(S*) is the complete lattice
formed by all the subsets of S*, with partial ordering ⊆, a
top element or greatest upper bound S*, a bottom element
or least upper bound ∅, and meet and join operations
equivalent to the set operations ∩ and ∪, respectively.

The sets that form the elements of L(S*) are potentially
unbounded in size (limited only by the maximum stack
depth permitted by a particular PostScript interpreter).
Therefore a representation that requires an explicit enu-
meration of the elements of the sets is unsuitable for use by
static analysis algorithms. We believe that sequences of
types that occur at the top of the stack will usually follow
simple patterns, and that regular expression notation is
adequate to describe the patterns. For example, the type
signature of the SumN function, above, may be written as

SumN: (I|R)*I → (I|R)

Similarly, a function that draws lines connecting a series of
points on the page would possibly accept a sequence of
coordinate pairs as its arguments and the stack state prior
to a call to this a function could be represented by the reg-
ular expression (RR)*.

In the course of performing analysis by abstract inter-
pretation, we will need to construct unions of sets of type
code sequences where control flow paths merge. Intersec-
tions of sets will be required to combine results of forward
and backwards analysis. Ideally, we would like to use a lat-
tice whose elements are REs and where the glb (meet) and
lub (join) operations correspond to intersection and union
of the sets. Unfortunately, we have not been able to con-
struct a suitable lattice. Full RE notation does not guaran-
tee compact representations for sets of stack states and also
provides many representations for the same stack state.
Instead, we have chosen to use a simplified and highly
restricted form of RE notation, as explained below.

2.1 Alternation-free regular expressions.

In principle, algorithms to test for inclusion between two
regular expressions and to construct the union or intersec-
tion of two regular expressions as a new regular expression
exist. In practice, however, the algorithms are non-trivial
and too inefficient for use by an abstract interpretation pro-
cedure that must iterate a large number of times over sec-
tions of PostScript code. We therefore use a subset of reg-
ular expressions, a subset that we will refer to as Alterna-
tion-Free Regular Expression notation or AF-RE for short.
The syntax of AF-REs is defined by the context-free gram-
mar shown in Figure 1. Curly braces are grammatical nota-
tion to represent zero or more repetitions of the enclosed
symbols. The partially ordered set S# = S ∪ {N,X} repre-
sents any of the elementary type designator codes (I, R, S,
B,...) augmented by two extra type codes. N, for numeric, is
equivalent to the regular expression (I | R) while X, for
unknown, is equivalent to (I | R | S | ...). The partial order
relation for elements of S# is defined as follows

I ≤t N, R ≤t N, N ≤t N, N ≤t X, X ≤t X

α ≤t X and α ≤t α, α∈ S#
The relation ≤s which compares two type codes sequences
of equal length is defined as the conjunction of ≤t on pairs
of corresponding type codes:

α1....αn ≤s β1...βn, if αi ≤t βi and i ∈ [1, n]

 The implicit alternations inherent in the meanings of N and
X are the only forms of alternation provided in the AF-RE
notation. Recalling that AF-REs are just a notation we use
to describe sets of sequences of types codes, ε represents
the empty sequence, the top symbol is used to denote
the set of all possible sequences, and the bottom symbol ⊥
is the empty set (meaning that no valid stack state exists).
As is conventional in regular expression notation, a super-
script asterisk denotes zero or more occurrences of the pre-
ceding term and a superscript question mark denotes zero
or one occurrences. Thus the following five expressions
are valid instances of AF-REs.

(S)?RN(SIS)* (I)*I (RR)*I ε X*

The final expression, X*, denotes the universal set of
type code sequences and is equivalent to the top element,

. The expression ε denotes an empty stack, which is a
legitimate stack state. Note that, as well as omitting

2. This includes the standard Postscript control flow operators such as
ifelse and loop.

afre → ⊥
afre →
afre → ε
afre → conj {conj}

conj → (S# {S# })∗

conj → (S# {S# })?

conj → S#

⊥

Figure 1 AF-RE grammar.

⊥

⊥

explicit alternation, the notation does not permit nesting of
expressions. For example, the expression (I(R)*)? is not
a valid AF-RE.

2.2 Notational convention

In the remainder of the paper we adopt the following con-
ventions: r and s denote arbitrary AF-REs, c and d are used
for conjuncts that make up an AF-RE (e.g. (I)*), Greek let-
ters α and β represent single type codes (elements of S#)
and ρ and σ represent sequences of type codes. Superscript
hash marks are used to indicate abstraction. Juxtaposition
of terms, e.g. rs, denotes concatenation of AF-REs.

2.3 AF-RE operations

The AF-RE notation, as presented above, still provides
more then one expression to denote the same set of type
code sequences. To simplify algorithms that manipulate
AF-REs, it is desirable to work with a simplified subset of
the AF-RE notation that restricts the number of different
representations of a single set. A simplification procedure
that converts an arbitrary AF-RE into a restricted AF-RE
may be written as a series of rewrite rules. These rules are
shown in Figure 2.

An example of simplification for (SI)*S(IS)* is

(SI)*S(IS)* ⇒ (SI)*(SI)*S ⇒ (SI)*S

The ≤a relation between two AF-REs denotes inclusion
of the corresponding sets of type code sequences. The truth
of the relationship r ≤a s for two simplified AF-REs may
be tested by the rules shown in Figure 3. In these rules a
sequence of zero conjuncts should be replaced by ε when
appropriate. The rules may be used to derive, for example,
I ≤a (I)?(S)*.

The AF-RE notation cannot describe all possible sets of
type code sequences. A consequence is that, given two AF-
REs r and s, AF-REs that are equivalent to r ∪ s or to r ∩ s
may not exist. Algorithms that compute r ∪s and r ∩ s
must, in general, be approximate. We require such algo-
rithms for the abstract interpretation and we are therefore
forced to provide conservative approximations to the
results. These approximations to ∪ and ∩, together with
the ≤a relation of Figure 3, do not form a lattice where the

elements are AF-REs. It is to be understood that the
abstract domain for our analysis is L(S#*), but that our
analysis uses only elements of the domain that have repre-
sentations as AF-REs. Note that the only difference
between L(S*) and L(S#*) is that the latter possesses addi-
tional N and X codes. A partial diagram of the L(S#*) lattice
indicating some lattice elements that have equivalent AF-
RE representations and one that does not is shown in Fig-
ure 4. As the figure shows, the {II,IS} value cannot be
represented by an AF-RE. If this value should arise in an
analysis, it must be approximated. Any higher value that
can be represented by an AF-RE would be suitable.

We use the notation ∨ to represent our conservative
approximate implementation of the join, ∪, and ∧ to repre-
sent the conservative approximate implementation of the
meet, ∩ . In general, the implementations ensure that

 and hold.

(ρ)*(σ)* ⇒ (ρ)*, if σ ≤s ρ
(ρ)*(σ)* ⇒ (σ)*, if ρ ≤s σ
(ρ)*(σ)? ⇒ (ρ)*, if σ ≤s ρ
(ρ)?(σ)* ⇒ (σ)*, if ρ ≤s σ
α(αρ)* ⇒ (ρα)*α
α(αρ)? ⇒ (ρα)?α

Figure 2 AF-RE Simplification Rules.

⊥ ≤a r

r ≤a T
ε ≤a ε
rα ≤a sβ if α ≤t β and r ≤a s

r(ρ)* ≤a s(σ)*, iff (ρ ≤sσ and r ≤a s) or r(ρ)* ≤a s

r(ρ)? ≤a s, if rρ ≤a s and r ≤a s
r(ρ)* ≤a s, if r(ρ)*ρ ≤a s and r ≤a s
r ≤a s(α)?σ, if r ≤a sα or r ≤a s
r ≤a s(α)*σ, if r ≤as(α)*α or r ≤a s

⊥

⊥

 I S ε II SI...

 I* { SI, II }

 S?I?I I?S?I

 I*S*
...

Figure 3 Inclusion Relation for AF-REs.

Figure 4 A Small Part of the L(S#*) Lattice.

The shaded set of stack states does not have an AF-

...

...

...

...

r s∪ r s∨⊆ r s∩ r s∧⊆

The meet and join operations are essential to the
abstract interpretation: the join is used whenever two con-
trol flow paths merge to unify information on the two
paths. The meet is used to refine the approximation
obtained from backward and forward passes of the analysis
algorithm. Meets and joins will be performed with great
frequency, so their cost dominates the overall cost of the
analysis. Efficiently computable conservative approxima-
tions to the true meet and join operations of the L(S#*) lat-
tice are therefore desirable. The actual meet operation, ∧,
used in our analysis is defined in terms of a disjointness
relation, r # s, by the four rules shown in Figure 5. The dis-
jointness relation provides a quick test as to whether two
sets of stack states are incompatible – that is, whether their
intersection is empty. In the interests of execution effi-
ciency, the test is not required to return true in all cases
when the intersection is empty. That is, the # relationship
is defined so that r # s implies that the intersection of the
corresponding sets in L(S#*), r ∩ s, is empty. The converse
does not necessarily hold. One suitable, simple, definition
is provided by the five rules given in Figure 6.

Similarly, the join operation on AF-REs is a conserva-
tive approximation of set union. As an example of the pos-
sibilities, BI ∨ SI may be joined as (B)?(S)?I,
(BI)?(IS)? or even XI. All are valid but different
approximations to the true set union, {BI,SI}. Depending
on the purpose of the analysis, we may prefer one approxi-
mation over another. For instance, the third form preserves
information on the depth of the stack, the second keeps
related sequences of type codes in the same conjunct,
while the first and third retain the fact that the top stack
element has the type code I.

A non-deterministic definition for the join operation is
provided by the transformations of Figure 7 plus three

more transformations that are the same as rules 6-8 with
the operands of ∨ interchanged.

Of these transformations, the first two are the only ones
that do not introduce any approximation in the result.
Hence, when several results are possible, a result that uses
the first two transformations the most often is preferred.

3. The abstract interpretation algorithm

The PostScript language was designed for interpretation
rather than compilation. The goal is most apparent in the
language’s elegant but spartan syntax: a program is simply
a sequence of operations, be they integers, operators or
code blocks. Each operation has a meaning that can be
expressed in terms of simple stack operations. An integer
constant, for example, should be viewed as an operation
that pushes an integer onto the stack.

The abstract interpretation algorithm will take advan-
tage of that simple structure. We perform static analysis by
propagating abstract stack states through the program,
alternating between forward and backward passes. The
AF-RE notation is used to represent these stack states. For
each point in the program, forward analysis computes the
effect of the next operation in the sequence on the current
stack state, the result is then intersected with the previous
estimate. This guarantees that each pass can only give a
more accurate result, in other words that we progress down
the lattice. Thus, for a program consisting of a linear
sequence of n operations, we have n formulae of the form:

pp’i+1 := ci(ppi) ∧ ppi+1

which, given initial approximations to two consecutive
stack states ppi and ppi+1, computes a better approximation
pp’i+1. Of course, each operation ci is defined on the
abstract domain.

For non-sequential programs such as programs using
the conditional operator ifelse, the generalization is
obvious: we take the union, ∨, of all predecessors of a
point.

Backwards analysis reconstructs possible stack states
from the results of applying an operator. We need to per-

r ∧ s = r, if r ≤a s

r ∧ s = s, if s ≤a r

r ∧ s = ⊥, if r # s

r ∧ s = r or s, otherwise

Figure 5 The Meet Operation ∧

rα # ε
ε # rα
rα # sβ, if r # s or

 not (α ¦≤t β or β ¦≤t α)
rc # s if r # s

r # sc if r # s

Figure 6 The Disjointness Function #

1 rα ∨ sβ ⇒ (r ∨ s)α, if β ≤t α
2 rα ∨ sβ ⇒ (r ∨ s)β, if α ≤t β
3 rI ∨ sR ⇒ (r ∨ s)N

4 rR ∨ sI ⇒ (r ∨ s)N

5 rα ∨ sβ ⇒ (α ∨ s)X

6 rα ∨ sβ ⇒ (r ∨ s) (β)?(α)?

7 r ∨ s(ρ)? ⇒ (r ∨ s)(ρ)?

8 r ∨ s(ρ)* ⇒ (r ∨ s)(ρ)*

Figure 7 The Join Operation ∨

form backwards passes for two reasons. First, to analyze
the type of a function we need to know what it expects on
the stack before being invoked; forwards analysis can only
give answers on the state of the stack after the function has
been executed. Second, to improve the result of the analy-
sis by propagating information on how values are used. For
instance, consider a program that contains a conditional
branch which, if executed, leaves a string on the stack. If
the conditional branch is followed by an arithmetic opera-
tion, we can conclude that the program is erroneous (or, at
least, redundant) since, if that branch is ever taken, a run-
time error is guaranteed to occur. Backwards analysis uses
abstract inverse functions, ci

–1, to describe the inverse
effects of operations on the stack. For each program point,
ppi, we apply a formula

pp’i := ci
-1(ppi+1, ppi) ∧ ppi

that yields a more precise estimate of the stack state at ppi.
For backwards analysis in a conventional language like
Pascal, the inverse function used in the formula would take
the form ci

-1(ppi+1). However, as we explain later, the
inverse functions for certain PostScript operations (such as
the ifelse operator) require additional information to be
able to compute a useful result.

The overall analysis is performed by a simple iterative
algorithm (similar to one given in [2]). The initial assump-
tion is that at each program point any stack state is possi-
ble. (If a complete program is being analyzed, the initial
stack state may be set to empty.) The algorithm stops if no
stack state changes in the course of one iteration.

for i := 0 to n do
ppi := X

* -- Recall that X* is
 -- equivalent to .

repeat
for i := 0 to n-1 do

ppi+1 := ci(ppi) ∧ ppi+1
for i := n downto 1 do

ppi := ci
-1(ppi+1,ppi) ∧ ppi

until a fixpoint is achieved

3.1 Abstract operators

So far we have not discussed the meanings of individual
PostScript operators. Abstract interpretation requires that
all operations in the concrete domain be mapped into cor-
responding operations in the abstract domain with respect
to their effects on the stack. In addition, backwards analy-
sis requires that the inverse of every operation be defined.

All of these operations may be defined in terms of two
stack manipulation operations: pushing a value onto the
stack, and popping a value off the stack. Our push# and
pop# operations have unconventional definitions, however,
because they operate on sets of stack states. That is, push#

must prefix a type code to every element of the set of
states, whereas pop# must attempt to remove a leading type

code from every element of the set – discarding elements
that would be inconsistent with the pop operation. To
improve the precision of the analysis, pop# tries to remove
a particular type code from the stack. For example
pop#(I, S*) = ⊥, because no stack state described by S*

has an I at its top. On the other hand, pop#(I, I(S)?) = ε
and pop#(I, I(S)?I?) = I?S?.

Definitions for push# and pop# are given in Figure 8. As
before, we use ρ to denote a sequence of conjuncts, α as an
arbitrary sequence of type codes, and t and u stand for sin-
gle type codes. Needless to say, the results of the push#

and pop# operations usually require simplification.
The analysis of a simple PostScript function, triple,

/triple { 3 mult } def

which multiplies its argument by three can now be demon-
strated. This function first pushes the integer 3 on the
stack, then the multiplication operator pops the two top-
most elements and pushes their product back on the stack.
The semantic equations for triple are shown in Figure 9. In
the semantic equations, 3#, mult#, 3#-1 and mult#-1 rep-
resent the given abstract functions and their inverses. (The
definitions for mult and mult#-1 assume that both argu-
ments are integers; a more general definition for the poly-
morphic case is given later.)

The stack states at the three program points marked in
the code are named pp1, pp2 and pp3. If we begin with the
assumption that the stack state at program point pp1 is X*

(representing an unknown stack state), just one iteration
with the forwards and backwards equations will deduce the
stack states shown in the following table.

⊥

0 1f 1b

pp1 X*I

pp2 X*I X*II

pp3 X*I X*I

pop#(α,) =

pop#(α, sβ) = s, if α ¦≤t β
pop#(α, s(ρβ)?) = pop#(α, s) ∨ sρ, if α ¦≤t β
pop#(α, s(ρβ)?) = pop#(α, s), if not α ¦≤t β
pop#(α, s(ρβ)*) = pop#(α, s) ∨ s(ρβ)*ρ, if α ¦≤t β
pop#(α, s(ρβ)*) = pop#(α, s), if not α ¦≤t β
pop#(α, s) = ⊥, otherwise

push#(α, ⊥) = ⊥
push#(α, s) = sα

Figure 8 Abstract Stack Manipulation Operations

⊥ ⊥

⊥ ⊥

⊥

⊥

The column headed 0 shows the initial stack states, the
column headed 1f shows the states after the forward pass
(computed in the order pp1, pp2, pp3), while the 1b col-
umn shows them after the backward pass (computed in the
order pp3, pp2, pp1). It is possible to deduce from the pp1
and pp3 states (and the fact that the X* component of the
stack description is never expanded) that the signature of
the triple function is I → I.

4. The extended abstract model

4.1 Using values

Some primitive operators in PostScript require more pre-
cise analysis than that permitted by AF-RE descriptions of
stack states if we wish to derive useful signatures for user-
defined functions. PostScript has some polymorphic oper-
ators whose effect on the stack depend on the values of one
or more of their arguments. To be able to perform useful
analyses, it is essential to know these values. The analysis
used in our implementation attempts to keep track of two
kinds of values – integer values and code block values.

Integer values are essential for determining the effect of
the roll operator. It is used to perform a circular shift on a
segment of the stack. The roll operation first pops two
integers j and n. It then rotates the next n stack elements by
j positions. For example applying the roll operation to
the stack state <"b",4,"a", 3, 1> results in the state
<"a","b", 4> and applying it to <"b",4,"a", 2, 1>
results in <"b","a", 4>. Clearly, we would usually need
to know the values of the two control integers in order to
be able to construct a description of the stack state after
roll is executed.

Code block values are needed if we are to be able to
handle control constructs as simple as an if-then-else or a
while loop. Any sequence of operations may be enclosed
by curly braces to form a code block. When the bracketed
group is encountered in a program, the interpreter pushes a
reference to that code block on to the stack. The operations
inside that code block are not executed at that time. A con-
trol flow operation, such as ifelse, may be used to select
a code block and execute it. The ifelse operation takes
two code blocks and a boolean as its arguments. Depend-
ing on the boolean value, it executes one of the two code
blocks, discarding the other. Consider, for example, a
function that takes three integers as its arguments. If the
first integer is zero, it returns the sum of the two other inte-
gers. Otherwise, it returns the difference of the two other
integers. The signature and the code for the function are

add_or_sub: I I I → I

/add_or_sub {0 eq {add} {sub} ifelse}

def

where eq is the equality test. As well as illustrating code
blocks, the example is also intended to convince you that it
is impossible to construct a standard control flow graph for
PostScript without first performing reaching analysis on
code block values. If it fails to do that, consider the follow-
ing (ugly) example:

{add}{sub} 3 1 roll 0 eq 3 1 roll ifelse

Here the code block values accessed by the ifelse cannot
be discerned without analyzing the effects of the two uses
of the roll operator. Even more inscrutable examples
would be easy to construct.

We handle values by extending S#, making it a lattice.
For instance, each I type code that appears in an AF-RE
has an associated value attribute. The attribute may hold an
integer value, or it may hold a code to indicate that no
value is known, or finally it may hold a code to indicate
that there is no unique integer value. The attribute values
of course form a trivial lattice, with a suitable ≤t relation.
The abstract semantics of an integer constant operator such
as 2 are expanded to set the value attribute of the I type
code in the resulting stack state description. Similarly, the
abstract semantics of arithmetic operations such as add
and mult are expanded to compute resultant value
attributes when possible. Whenever two I type codes with
conflicting values must be unified (perhaps as a result of
simplifying), the value attribute is tagged to show multiple
values are possible. This simple analysis of integer values
is normally sufficient to handle an operator like roll.
(Inspection of typical PostScript code shows that roll is
almost always used with integer constants for its first two
arguments.) When the value attribute is important to the
analysis, we will show the value as a subscript. Thus, the

3 mult
pp1 pp2 pp3

Forwards Equations
pp2 = 3#(pp1) ∧ pp2

pp3 = mult#(pp2) ∧ pp3

Backwards Equations
pp1 = 3#-1(pp2,pp1) ∧ pp1

pp2 = mult#-1(pp3,pp2) ∧ pp2

where
 3# = λs.push#(I,s)

3#-1 = λs.λs'.pop#(I,s)

mult# = λs.push#(I,pop#(I,pop#(I,s)))

mult#-1 = λs.λs'.pop#(I,push#(I,push#(I,s)))

Figure 9 Semantic Equations for Triple Function

stack state at the program point immediately before the
roll operation in

"b" 4 "a" 3 1 roll

would be written as SI4SI3I1.
Code blocks are handled in an analogous manner. Each

code block that appears in the PostScript program is sim-
ply numbered. A reference to a code block on the stack is
represented by a type code of C with a subscript to identify
the particular code block. Thus, if the two code blocks in
the add_or_sub example are numbered 1 and 2, the stack
state immediately before the ifelse operation would be
described by BC1C2 . Forwards analysis of the ifelse
operation requires that the operations contained in both
code blocks be analyzed and the resulting stack states are
then joined. If either of the code blocks cannot be identi-
fied, the resulting stack state will be represented by X*.
Backwards analysis is a little more complicated because
the stack state that follows the ifelse does not show
which code blocks form the then and else components of
the operation. Our solution is to include the stack state
immediately before the ifelse in the backwards equa-
tion.

4.2 Using function signatures

PostScript functions and operators only affect the top of
the stack, so when representing their type signatures only
the topmost elements of the stack state that are actually
used will be represented, the remainder of the stack will be
assumed to be unchanged. As an example, the primitive
operator for addition requires nine type signatures to
describe it fully:
add: II → I add: IR → R add: RI → R

add: RR → R add: IN → N add: RN → R

add: NI → N add: NR → R add: NN → N

The signatures determine the corresponding abstract func-
tions for addition and its inverse (used in the backwards
analysis). The forwards equation may be written as:3

add# = λs.(push#(I,pop#(I,pop#(I,s)))
∨ push#(R,pop#(R,pop#(I,s)))
∨ push#(R,pop#(I,pop#(R,s)))
∨ push#(R,pop#(R,pop#(R,s))))

And the inverse operation used in the backwards analysis
may be written as:

add#-1 = λs.(push#(I,push#(I,pop#(I,s)))
∨ push#(N,push#(N,pop#(R,s))))

The numeric type code N must be used in the inverse
function because a result type of R does not unambiguously
imply the types of the two input arguments. However,

intersection of the AF-RE generated by add#-1 with the
previous estimate of the stack state would often cause the N
to be replaced by I or R again.

5. Abstract interpretation of loops and
recursion

5.1 Widening

A simple loop that pushes a value on the stack with each
iteration is a potential problem. For example, if the extra
value is an integer, the stack state after one iteration might
be I. A second iteration would lead to the stack state II,
and joining with the result of the first iteration leads to the
set of possible stack states being {I, II} (to allow for the
possibility that the loop exits after either one or two itera-
tions). Similarly, a third iteration leads to {I, II, III},
and so on. The join operation that is used to combine the
states into a single AF-RE would generate successive
results of I, I?I, I?I?I, and so on. It is clear that no mat-
ter how many iterations are analyzed, we will not reach a
fixpoint, and the analysis will never terminate. It is a well-
known problem in abstract interpretation [6].

A standard solution to the termination problem is to
work with a lattice with a finite height. You would then be
guaranteed that a fixed number of analysis iterations
through any loop will reach a fixpoint, even if that fixpoint
is . In our case, we could make the lattice finite by
restricting the number of terms in an AF-RE. However,
that would introduce an arbitrary degree of approximation
in our static analysis. An alternative approach, named wid-
ening, has been proposed by Cousot [3]. Stransky has used
the technique for analyzing Lisp [6]. Widening corre-
sponds to the intuitive approach of guessing a pattern to the
sequence of abstract values and thereby allowing a direct
jump to the limiting value. In the case of the particular
sequence I, I?I, I?I?I, a human would probably have no
trouble in guessing that (I?)nI would describe the n-th
value. The limit of the sequence is obviously I*I, and that
would be the fixpoint.

We implement the widening approach too, and that
forced us to specify the most general patterns that we
would look for in successive stack state representations.
We check for two different patterns. The first pattern cor-
responds to a stack that is growing because of values being
left on the stack by each iteration or recursive call. It is:

r1 r2 r3 ⇒ r1 ρ r2 σ r3 ⇒ ... ⇒ r1 (ρ)∗ r2 (σ)∗ r3

where each r represents a group of conjuncts in our AF-RE
notation and Greek letters represent sequences of type
codes. The r1 is intended to correspond to the bottom
region of the stack that is unaffected by the loop or recur-
sion. The r3 is intended to correspond to, for example, loop

3. A variant of pop# that extracts two type codes from the stack would
(sometimes) yield more precise results. It would also simplify these
semantic equations.

⊥

control values that are pushed onto the stack at the end of
an iteration in order to be consumed by the loop control
test. The fundamental pattern is really

r ⇒ ρ r σ ⇒ ... ⇒ (ρ)∗ r (σ)∗

The ρ term corresponds to values that are pushed onto
the stack before a recursive call, and the σ term corre-
sponds to values pushed after a recursive call. Of course,
either or both of the ρ and σ terms may be empty. The
same pattern should describe the effect of a typical loop
that generates values on the stack.

The second pattern corresponds to a loop or function
that consumes values (our SumN function would be an
example). The pattern we look for is:

r1 ρ r2 ⇒ r1 (ρ)? r2

In this case, we do not need to predict the fixpoint because
only a finite number of iterations (determined by the com-
plexity of the initial AF-RE) will be needed before a limit-
ing value is reached. For example, an analysis of a recur-
sive formulation of SumN called with four integers initially
on the stack would likely progress through the sequence of
states IIII, III?I, II?I?I, and I?I?I?I. The final
expression is the limit value. (The final state is not I
because, unless we use the value of the count integer, we
cannot be sure that all the integers are arguments con-
sumed by SumN.)

We implement widening by a function ∇ that takes
three arguments: two AF-RE values and an integer N, rep-
resenting the number of iterations that have been per-
formed. The AF-REs represent the stack states on the latest
two iterations.

The result of ∇ is an approximation to these AF-RE
arguments, with a precision controlled by N. If our imple-
mentation of ∇(S1, S2, N) finds that the second pattern (a
contracting stack) is applicable, the result is simply S2. If
our implementation finds the first pattern (a growing stack)
is applicable, the result for N=1 and N=2 is S2. For N=3,
the result is the predicted limit value of the sequence. For
N>3, the result is S1 if S1 and S2 are equal, otherwise the
result is X* (a totally arbitrary stack). The N>3 case han-
dles the situation when the predicted limit value turns out
not to be a fixpoint. Since X* is the top of the lattice, it is
guaranteed to be a fixpoint, but one that unfortunately
throws away all information about the loop or function.
Finally, if the sequence of stack states does not fit either of
our patterns, the result is again X*.

If we keep iterating through the code of a loop or a
recursive function and apply ∇ after each iteration, we are
guaranteed that we will reach a fixpoint in a finite number
of steps (at most four steps for the growing stack pattern).
We cannot, of course, guarantee that the fixpoint is the
least fixpoint (which would give the most precise descrip-
tion of the effect of the code).

5.2 An example

Our example is a function ReadList that inputs a series of
numbers, until a zero is read. The result of the function is
the count of the number of values read followed by those
values. (Thus, ReadList could be used to set up argument
values for the SumN function used as an earlier example.)
The code for ReadList uses an auxiliary function
ReadList1. They are defined as follows:

/ReadList {0 ReadList1} def
/ReadList1 {ReadInt dup 0 eq

{2 1 roll 1 add ReadList1} {pop}
ifelse} def

(ReadInt is assumed to be a function that reads an integer
value onto the stack.)

We begin with a brief explanation of the code. On entry
to the ReadList1 function, the stack is assumed to already
hold a count followed by that number of integers. For
example, the stack state might be <23, 7, 15, 3>. Suppose
that ReadInt obtains 17 as the next value, leaving it on the
stack. Then dup will duplicate that value, and 0 will push a
zero to obtain the state <23, 7, 15, 3, 17, 17, 0>. Next, eq
pops and compares the top two values for equality, replac-
ing them by the result false. The ifelse operator is there-
fore reached with the stack holding <23, 7, 15, 3, 17, false,
c1, c2> where c2 and c1 denote references to the two code
blocks. The ifelse operator pops three values and selects
code block c1 for execution. The code block is entered with
a stack state of <23, 7, 15, 3, 17>. It uses roll to rotate the
top two values, yielding <23, 7, 15, 17, 3>. It adds one to
the top value yielding <23, 7, 15, 17, 4> and then recur-
sively calls ReadList1 again. The function is re-entered
with the stack again holding a count followed by that num-
ber of values. Finally, when a zero is read, the ifelse
executes the pop to remove the zero value from the stack
and the recursion unwinds.

If our algorithm is asked to analyze the calling code:

" total" ReadList SumN PrintInt PrintStr

it will compute the sequence of stack state values shown in
the table below. These are the values at a program point
located just after a return from the call to ReadList1 located
inside ReadList..

Iteration,
N

Previous
Value, S1

New Value,
S2

∇(N,S1,S2)

1 X* SI SI

2 SI SII? SII?

3 SII? SII?I? SII?I*

⇒ SII*

⇒ SI*I

4 SI*I SI*I SI*I

The effect of the widening function ∇ is shown explic-
itly in the table. Initially, the stack state at the program
point is shown as X*. When forwards analysis reaches that
program point for the first time, a stack state of IS is
obtained. These two stack states, plus the iteration number
(1), are supplied as arguments to ∇ yielding a result of IS.
Two more iterations through the function definition gener-
ate the states shown, reaching line 3 where widening
extrapolates the effect of the function to SII?I*. Simplifi-
cation of this expression yields the form SI*I and one
final iteration verifies that this is indeed a fixpoint.

6. Discussion

The results achieved so far are only a beginning. The prob-
lem of analyzing a stack-based language like PostScript
has turned out to be an order of magnitude more difficult
than analysis of a typical imperative language like Pascal.
It is also considerably more difficult than for a polymor-
phic language like ML or Prolog. We feel, however, that
we have achieved our initial goals successfully. We are
able to analyze a rich subset of PostScript, describing the
stack states using a notation, AF-RE, that is readily intelli-
gible to people. The analysis techniques achieve precise
results on simple code and approximate, but conservative,
results on more involved code. The results of the analysis
can assist program verification by identifying erroneous
code and could form the basis for a PostScript compiler or
optimizer by finding function arguments that have fixed
types.

In the future, we intend to explore alternative analysis
techniques to see whether they can achieve more precise
results without becoming computationally infeasible. One
possibility is to drop the use of regular expression notation
for stack states and use finite state automata (FSAs)
instead. Since the regular languages are closed under union
and intersection, we could use FSAs as the lattice of values
in the abstract domain, (We wonder, however, whether we
would be able to invent a suitable widening operator for
use with FSA values.)

We are, of course, still a long way from handling the
full PostScript language. Variables are, perhaps, the big-
gest omission. In full PostScript, a value may be bound to a
name in the same way as a function definition is bound to
the function’s name. For example,

/counter 0 def

(the / prefix indicates a name as opposed to a value). Sub-
sequently, the identifier counter (without the prefix) may
be used to refer to the associated value, 0. Since the def
operator may also be used to re-define the value of
counter, counter acts like a variable. Our current subset of
PostScript does not include variables because of the
dynamic scope structure of PostScript. The PostScript

interpreter maintains a separate stack of dictionaries, and
each dictionary holds bindings of names to values. A name
lookup involves a search of these dictionaries in stack
order. A PostScript program may create new dictionary
objects dynamically and may manipulate the dictionary
stack. We therefore cannot handle variables in a manner
that would be true to the spirit of PostScript until we have
incorporated dictionary objects into our analysis. (The
NeWS dialect encourages extensive use of dictionaries to
emulate objects in an object-oriented style of program-
ming.)

Static analysis of the full PostScript language is an
impossible goal. In principle, it is possible to re-bind any
predefined operator to make it execute different code.
When combined with the possibility that a program may
read or create a text string and dynamically convert that
string into a code block with the cvx operator (convert to
executable), a safe static analysis could not continue after a
use of cvx. After that point, you could not be sure that any
operator still performed the same operation. A permanent
restriction to a subset of PostScript where operators may
only be re-bound to code with identical function signatures
would appear to be necessary (and quite sensible too).

PostScript is truly an interesting language.

References

[1] S. Abramsky and C. Hankin, An Introduction to Abstract
Interpretation in Abstract Interpretation of Declarative
Languages, Abramsky and Hankin, Ellis Horwood, 1987.

[2] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Prin-
ciples, Techniques and Tools, Addison-Wesley (1986).

[3] P. Cousot and R. Cousot, “Abstract Interpretation: A Uni-
fied Lattice Model for Static Analysis of Program by Con-
struction or Approximation of Fixpoints,” 4th POPL , Los
Angeles, CA (January 1977).

[4] P. Cousot, “Semantic Foundations of Program Analysis,”
in Program Flow Analysis: Theory and Applications, S. S.
Munchnick, and N. D. Jones (editors), Prentice Hall, 1981.

[5] L. J. Hendren, “Parallelizing Programs with Recursive
Data Structures,” Ph.D Thesis, TR-90-1114, Cornell Uni-
versity, April 1990.

[6] J. Stransky, “Analyse sémantique de structures de données
dynamiques avec applications au cas particulier de langag-
es LISPiens,” PhD Thesis, Université de Paris-Sud, Centre
d’Orsay, June 1988.

