
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/228911036

Current	Trends	and	the	Future	of	Software-
Managed	On-Chip	Memories	in	Modern
Processors

Article	·	April	2010

CITATION

1

READS

38

1	author:

Shahid	Alam

Qatar	Foundation

22	PUBLICATIONS			38	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Shahid	Alam

Retrieved	on:	27	September	2016

https://www.researchgate.net/publication/228911036_Current_Trends_and_the_Future_of_Software-Managed_On-Chip_Memories_in_Modern_Processors?enrichId=rgreq-52c7f887b0a9f6fadb33f367708377de-XXX&enrichSource=Y292ZXJQYWdlOzIyODkxMTAzNjtBUzoxMDMyMjE2OTk4MDkyODRAMTQwMTYyMTM3OTQ1NQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/228911036_Current_Trends_and_the_Future_of_Software-Managed_On-Chip_Memories_in_Modern_Processors?enrichId=rgreq-52c7f887b0a9f6fadb33f367708377de-XXX&enrichSource=Y292ZXJQYWdlOzIyODkxMTAzNjtBUzoxMDMyMjE2OTk4MDkyODRAMTQwMTYyMTM3OTQ1NQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-52c7f887b0a9f6fadb33f367708377de-XXX&enrichSource=Y292ZXJQYWdlOzIyODkxMTAzNjtBUzoxMDMyMjE2OTk4MDkyODRAMTQwMTYyMTM3OTQ1NQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Shahid_Alam3?enrichId=rgreq-52c7f887b0a9f6fadb33f367708377de-XXX&enrichSource=Y292ZXJQYWdlOzIyODkxMTAzNjtBUzoxMDMyMjE2OTk4MDkyODRAMTQwMTYyMTM3OTQ1NQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Shahid_Alam3?enrichId=rgreq-52c7f887b0a9f6fadb33f367708377de-XXX&enrichSource=Y292ZXJQYWdlOzIyODkxMTAzNjtBUzoxMDMyMjE2OTk4MDkyODRAMTQwMTYyMTM3OTQ1NQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Qatar_Foundation?enrichId=rgreq-52c7f887b0a9f6fadb33f367708377de-XXX&enrichSource=Y292ZXJQYWdlOzIyODkxMTAzNjtBUzoxMDMyMjE2OTk4MDkyODRAMTQwMTYyMTM3OTQ1NQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Shahid_Alam3?enrichId=rgreq-52c7f887b0a9f6fadb33f367708377de-XXX&enrichSource=Y292ZXJQYWdlOzIyODkxMTAzNjtBUzoxMDMyMjE2OTk4MDkyODRAMTQwMTYyMTM3OTQ1NQ%3D%3D&el=1_x_7


Current Trends and the Future of Software-Managed On-Chip
Memories in Modern Processors

Shahid Alam
Department of Computer Science

University of Victoria, BC V8P 5C2

E-mail: salam@cs.uvic.ca

March 15, 2010

Abstract

Processors are unable to achieve significant gains in speed using the conventional methods. For example

increasing the clock rate increases the average access time to on-chip caches which in turn lowers the

average number of instructions per cycle of the processor. On-chip memory system will be the major

bottleneck in future processors. Software-managed on-chip memories (SMCs) are on-chip caches where

software can explicitly read and write some or all of the memory references within a block of caches.

This paper analyzes the current trends for optimizing the use of these SMCs. We separate and compare

these trends based on general classifications developed during our study. The paper not only serves as a

collection of recent references, information and classifications for easy comparison and analysis but also

as a motivation for improving the SMC management framework for embedded systems. It will also make

a first step towards making them useful for general purpose multicore processors.

1 Introduction

General purpose multicore processors (GPPs) and high performance embedded systems (ESs) available today

use random access memories to store program’s code and data. These memories can be static (SRAM) or

dynamic (DRAM). SRAMs are costlier and speedier, almost equal to the speed of the processor, than DRAMs

and are used as on-chip and off-chip caches. A cache stores copies of data or instructions, or a combination of

two, from the main memory to reduce the average memory access time. A CPU (Central processing unit) in a

GPP or a high performance ES has several levels of caches [40]. Caches closest to the ALU (Arithmetic logic

unit) after the registers, i.e; on-chip are called L1-caches. Access time of a L1-cache in ES is usually 1 cycle

and 1− 3 cycles in GPPs. L2-caches can be on-chip as found in multicore processors or off-chip. L3-caches if

present are off-chip. Access time of L2-cache is more than the L1-cache and access time of L3-cache is more

than the L2-cache. These on-chip and off-chip caches form a memory hierarchy and are either managed by

the hardware or the software, or a combination of the two. The purpose of using this cache hierarchy starting

from the on-chip cache is to break the effect of the memory wall [54]. If the speed of an on-chip cache is

almost equal to the speed of the CPU, as is the case in most modern processors, we can potentially break

the effect of the memory wall if all the memory accesses pass through this memory without any delay. One

option for accomplishing this is to let the compiler/software explicitly manage and somehow make the code

and data available all the time in these high speed memories/caches. (1) But is it possible in practice? (2)
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what efforts have already been done in this area both in ES and a GPP? (3) how successful are they? (4)

and what major areas need more research to ease and optimize the use of on-chip caches specifically in GPP?

These are our motivations for the study carried out in this paper.

We define software-managed on-chip memories (SMCs) as on-chip caches where software can read and write

all or some of the memory references within a block of caches. These can include locked caches, scratchpads

and are high speed SRAMs.

Locked caches are caches which are locked by the hardware, or sometimes by the software [37], so the

software can use either a portion of, or the whole cache as a scratchpad. Scratchpad memories (SPM) in one

form or other have been used in ES a long time. Recently [8] they have been recommended for ES as an

alternative to a cache. SPM is considered similar to L1-cache but it has explicit instructions to move data

from and to the main memory, often using DMA (Direct memory access) based data transfer. A comparative

study [55, 8] shows that the use of scratchpad memory instead of a cache gives an improvement of 18% in

performance for bubble sort, a 34% reduction in chip area, and uses less energy per access because of the

absence of tag comparisons. From here onwards in this paper we use the abbreviation SMC to denote these

memories.

SMCs are currently only used in ES including multicore processors [16, 17, 35, 46, 49]. There are also

research efforts [26, 14, 13, 15] where SMCs have been developed and tested for use in a GPP. The main

advantage as mentioned in [55, 8] of using SMCs are the savings they provide in area and energy. They can

also accelerate the speed of a program because of the close proximity to the CPU.

The basic purpose of SMCs is to improve both performance and energy saving by optimizing the use of

caches. Cache optimizations work on the principal of locality [19] which states that data recently used will

be reused again in the near future. There are two kinds of localities. Spatial locality: Data located together

will be referenced close together in time. Temporal locality: Data accessed recently will be accessed again in

near future.

As SMCs are managed by software, operating systems (OSs) and compilers (Especially dynamic/runtime

compilers) will play a big role in their efficient use by taking advantage of spatial and temporal locality of

code and data. A multicore processor’s local data that does not need to be committed to the main memory or

shared with other processors can efficiently utilize SMCs [36]. Threads in SMT (Simultaneous multithreading)

[52] processors can share the SMC. In a multithreading application running on a multicore processor, threads

that share data the most can be placed on a single SMT core to considerably decrease their communication

time and memory bandwidth. As we increase the number of cores, a core needs to have its own private on-chip

space to improve its performance characteristics. Recently IBM in its Cell processor [46] and Nvidia in its

GPUs (Graphic processing units) [49] have been experimenting with SMCs. SMCs will play a big role in

improving the performance of the next generation of microprocessors. Nvidia’s future GPU architecture, code

name FERMI [18], will contain a parallel data cache hierarchy with configurable 64 KB private L1-caches for

each streaming multiprocessor and a 768 KB shared L2-cache.

This paper analyzes the current trends for optimizing the use of these SMCs. In Section 2 we present

the current trends for managing and optimizing SMCs in software/hardware. In Section 3 we enumerate

simple classifications developed in this paper that help us to provide an analysis and comparison of this study.
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Section 4 separates, compares and analyzes these efforts based on these classifications. Section 5 concludes

the paper.

2 Current Trends in SMC Management and Optimization

Except for some pioneering work performed by Cheriton et al. in 1986 [14], this section reports on progress

made in optimizing the use of SMCs from 2000 onwards. We label these works for comparison according to

the type of work done and call this label as SMC Type. We only cover on-chip memories and exclude recent

work done [43, 9, 30, 21] on software-managed memory hierarchies that includes both on-chip and off-chip

memories. Readers interested in a comparison of programming models for managing memory hierarchies

(Both on-chip and off-chip) are referred to [44].

SMC-VMP: As mentioned before the first work done on targeting SMCs is by Cheriton et al [14]. They

implemented SMCs in an experimental multiprocessor called VMP [13]. Concepts learned in this experiment

were latter used in designing and developing the Paradigm architecture [15]. The Paradigm consisted of a

memory module and multiprocessor module groups. Each group consisted of: processors with on-chip caches

(private caches); an on board cache (shared cache); and interbus cache module. It is unclear to what extent the

Paradigm system was completed. We can see that similar concepts are being used now in building commercial

multicore processors [46, 49, 18].

The VMP processor was an experimental multiprocessor developed at Stanford University. It was a soft-

ware/hardware architecture that combined the OS, hardware and software as firmware-like cache management

modules. The main motivation for building such a processor was to give more control to the software to man-

age cache access. Local memory, ie; on-chip cache, contained the software for cache management. A cache

miss in the VMP is implemented as follows:

On a cache miss the cache controller issues an interrupt and generates a cache slot in the main memory to

be brought in. The processor on interrupt saves its state on the (Supervisor processor) stack and jump to the

cache miss handler routine stored in local memory. The cache miss handler routine maps the virtual address

to the physical address of the cache page and tells the block copier to copy the main memory to the cache.

If the data is not there a page fault occurs which is passed to the OS. The block copier works independent of

the processor and the processor updates its data structures during the copy. When the copy completes, the

processor resumes execution.

The VMP multiprocessor prototype was not ready at the time of experiments so they presented per-

formance results based on trace-driven simulations. The results presented were not very promising. The

processor performance reduced by almost 50% with a cache miss rate of 1%. As mentioned by the authors

[13], the real challenge of the VMP design was in the software and hence a lack of a good programming

environment was one of the major reasons for these disappointing results.

SMC-IIC: The first scheme to implement a runtime SMC is presented by Hallnor et al [26]. The SMC

implemented is for L2-cache. There are two parts to this implementation: hardware structure of the cache

called IIC (Indirect index cache); and the replacement algorithm called generational replacement.

The IIC uses a cache line table in hardware to make the cache replacement policy fully associative. It
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does not associate a tag entry to a special data block location and hence achieves fully associativeness. Hash

table entries with a pointer to the data block are used to lookup the tag for the block. The IIC’s replacement

algorithm is as follows:

The use of data is divided into prioritized pools. The data is moved into pools based on the frequency of

use. Instead of tracking the frequency of each data block they group them into smaller pools to make it easy

to track the usage. The block to be replaced is chosen from the non-empty lowest priority pool.

Traces are generated on the Intel architecture running Windows NT 4.0 to run simulations. These traces

contain instructions and data references to stress test the SMC. The generational replacement algorithm is

compared with traditional cache design using different associativities, 4, 8 and 16. The average improvement

on miss count is 45% on a block size of 512. It is not clear from the paper how the cache and the cache line

table is simulated in the hardware.

SMC-LT: Kandemir et al [29] presents a SMC management framework focusing on optimizing the array

based applications as found in image and video processing. The compiler divides the work into the following

three phases:

• Data access: Loop transformations [2] are used to decrease the data transfer between SMC and off-chip

memory and hence maximizing the use of the SMC. The portion of arrays required by the current

computation is fetched and is called a tile. The selection criteria for these tiles are: they should have

high reuse; and should fit in the SMC.

• Data partitioning: After loop transformations the compiler partitions the available space in the SMC

among the arrays accessed. The partioning depends on how the loops are transformed in the first phase.

• Code modifications: Code is inserted into the program at compile time for the changes mentioned above.

The SMC management framework on average is 30% better than when the SMC is used as a hardware

cache and is not able to improve upon the hand optimized version. The reason is the selection of tiles. In

selecting the tiles the hand optimized version not only consider the loop nests [2] but also the tile reuse

between multiple nests.

SMC-No-Cache: Banakar et al [8] recommends and establishes the use of a SMC instead of a cache

in ES to save energy and area. This is the first time such recommendation has been made. A comparison

is made between a 2-way set associative cache and the SMC. The results show that the area covered by the

SMC is almost 34% less than the cache. The energy consumption on average is reduced by 40% using the

SMC. An experimental compiler encc is used to generate code, which identifies the frequently used code and

data and maps them to the SMC using the knapsack algorithm.

SMC-Optimal: Avissar et al [6] presents an optimal memory allocation scheme for SMC in ES. The

optimality depends on the data collected by the profiler at compile time. The paper assumes that the target

ES has atleast two writable memories and no cache. Focus of this paper is on global and stack variables.

The basic process includes collecting data like size, frequency of access and total number of variables in the

application by profiling. This information is passed to the compiler. Compiler also gets the size and the

latency of the memories. Based on this information compiler formulates the problem of memory allocation

into linear optimization problem that is solved using Matlab.
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The scheme presented assumes the heap data to be allocated to the external DRAM. Heaps are allocated

dynamically, i.e; at runtime, and there is no way to know the size and allocation frequency of heap data at

compile time. Linear equations are formed for allocating global and stack variables to the SMC. With these

linear equations following constraints are defined to turn memory allocation problem into a linear optimization

problem: a variable can only be allocated to one memory unit; and sum of all the sizes of variables allocated

cannot exceed the size of the memory unit. For stack variables they propose the following two options for

allocation:

• Multiple stacks are allocated in SMC and DRAM. Because of more overheads this is feasible for large

number of variables.

• One stack is allocated to either SMC or DRAM. Because of less overheads this is feasible for small

number of variables.

The basis of the optimality is the formulation of the data collected by the profiler into linear optimization

problem. The parameters used to form the linear equations does not include the time of access to the variables.

In our opinion this information could be obtained at compile time, as is done in SMC-CT, but it may not be

as accurate as when it is collected at runtime. Even so, by including these times in the equations, we may

be able to further improve the solution. Results show that on average the SMC allocation achieves over 50%

speedup than the all DRAM allocation. A comparison with a hardware cache could have produced more real

results.

SMC-ICache-1: Huneycutt et al [27] presents the first effort to implement SMC using dynamic binary

rewriting for ES. An instruction cache (I-Cache) is implemented in the software as a client-server model. A

software cache controller at the client side handles hits and a hardware memory controller at the server side

handles the misses. This way the workload is divided between a client which does not need to be powerful,

hence saving energy in an ES, and a server which can be far more powerful. Instruction sequences are broken

down into chunks, which are basic blocks, at the hardware memory controller and send to the software cache

controller which places them in a cache on the client side called tcache. Instructions in the tcache can be

relocated to anywhere, i.e; tcache is fully associative. Instructions accessed recently are placed in the tcache.

The binary rewriter dynamically modifies the code to include jumps to either off-chip or on-chip memory,

depending on the location of the jump target. This way no matter whether the object is either on-chip or

off-chip the code runs correctly. By rewriting the instructions (Branch instructions) there is no need to check

for cache tags. Not all the tags can be avoided and replaced in this way. Only tags for the branch instructions

whose destinations are known at the time of rewriting are replaced and hence the technique only deals with

the common case of the branch instructions. The design for a data cache is also proposed but not implemented

in the paper.

The software I-Cache is compared with a direct mapped hardware cache with a 16 bytes block. Results

show 19% slow down of software cache than hardware cache. But they are successfull in proving that the

software cache can be implemented without any help from the hardware and its performance is close to the

hardware cache. Implementing I-Cache in software is good for ESs in a client-server model but we should

also take into account the communication between the client and the server. In these environemnts a client
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needs to communicate with the server for other purposes, like command and control, but the software cache

management will add more to this communication. The authors do not include or discuss this communication

cost.

SMC-ICache-2: The second effort of designing a software instruction cache is by Miller et al [37]. This

software I-Cache has been implemented on the MIT RAW prototype microprocessor [51]. There are two parts

to this design: a runtime; and a preprocessor.

Preprocessor: The preprocessor consists of a binary rewriter for code modifications, to add instruction

caching to the code, and is located in the main memory. Preprocessing is carried out before linking of the

object file. The preprocessor divides the cache into blocks. These blocks refer to the program basic blocks

in the CFG (Control flow graph) [2]. Basic blocks in a CFG have different sizes so to keep their sizes same

NOP (No operation) instructions are added. It is not clear from the paper what maximum size is kept for the

basic block. We assume its the size of the SMC. But, what if the size of a basic block is greater than size of

the SMC? The binary rewriter creates a destination table to store physical addresses along with the virtual

addresses of the control instructions which are at the end of a basic block in the CFG. This table is stored

in the main memory and consulted by the runtime to fetch the appropriate data for each control instruction.

In our opinion this way the runtime incurs a call to the main memory each time it jumps to the next block.

Runtime: The runtime is located in the cache. When the runtime receives control from one of the blocks

it looks up the physical address, in a block data table as described above that contains information about the

current basic block, based on the virtual address passed. If the block is present it jumps to the new block

otherwise it asks the main memory to send the block. When it receives a response it copies the block to a

specific memory location in the cache and jumps to the new block.

For cache replacement FIFO or FLUSH is used. FIFO evicts the oldest cache, and FLUSH flushes the

entire cache and starts fresh. A pin system is implemented for the software cache which allows a programmer

to specify what functions to pin/lock for time predictability in real-time systems. The pinned/locked code in

the cache cannot be evicted and therefore has predictable and consistent time when it executes.

Chaining is used to modify the code inside the cache the first time when a block is loaded by the runtime.

This changes the destination of the jump which requested the block. In this way, second time, the new block

is automatically executed without going through the runtime, which saves some clock cycles. According to

the authors it saves 40 clock cycles. Chaining is good for FLUSH because unchaining is not needed when the

block needs to be evicted. For indirect jumps, which are jumps that might have different target addresses,

each time all the target addresses are chained. This chaining is only done for function jumps, which according

to the authors have small number of different targets, and for FLUSH.

The experimental results presented in the paper are not very encouraging but they also prove, as is proved

in SMC-ICache-1, that an I-Cache can be implemented in software where hardware cache is not present and

improves convenience of programming. The I-Cache implemented neither improves performance nor energy.

Its major difference than the previous such effort, SMC-ICache-1, is that its implementation is not based on

a client-server model. Because of this it improves performance and energy saving compared to SMC-ICache-1

as shown in Table 1.

SMC-CT: The technique presented in [53] is an improvement on the previous work discussed in this survey
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as SMC-Optimal. Compile time decisions are used to change static memory allocation to dynamic memory

allocation (Explanation of these terms is given in Section 3) that on average improves the performance by

40% and energy saving by 31% compared to SMC-Optimal. When compared with all hardware direct mapped

cache implementation the improvement in overall performance is neglegible and is 1.7%. Out of 9 benchmarks

used only 3 of them show improvements in performance. Two of these show minor improvements but the

third benchmark G.721 shows a 100% improvement in performance, which considerably improves the overall

results. G.721 is one of the data compression techniques (Speech codecs) used in audio signal processing. We

are not sure why this discrepency is there as the memory use of G.721 is almost the same as some of the other

benchmarks as shown in Table I in [53].

The basic process/heuristic used consists of first identifying program points, which are points where its

beneficial to insert code for copying a variable from the DRAM to the SMC. A point is beneficial if: gain in

speed by having the variable in the SMC is greater than the cost of moving the variable to the SMC. Profiling

is used to find out this cost and benefit model. The compiler evicts some of the existing variables from SMC

to make space for incoming variables that makes the allocation dynamic. Variables with minimum size are

removed first to make the eviction simple and to keep the runtime lower. In a case of a tie the compiler

chooses the variable with higher timestamp.

The timestamps are a dynamic execution order of the running program and are generated by using a data

program relationship graph (DPRG). The DPRG is created by time stamping the call graph [2] of the program

in a depth first traversal. Each node in the DPRG is a program point as described above. The DPRG is a

directed acyclic graph as it does not handle recursive calls. Recursive cycles in the DPRG are collapsed to a

single node and are allocated to the DRAM. A sample program and its DPRG is shown in Figure 1.

void sample(int X, int Y)
{

if (X > 10)
C();

else
                    {

if (X > 20 && Y < 10)
                              {

D();
C();

}
else

while(X < 100)
X += 2;

}
A();
B();

}

(a) A sample program

1    18sample()

2  if  3

14    15A() 16    17B()

3  then  6 3  else  12

4  if  11

5  then  10 5  else  8

6    9D() 6  loop  7

4, 7    5, 8C() X

(b) DRPG of the sample program

Figure 1: A Sample Program and its Data Program Relationship Graph (DPRG)

For allocating global and stack variables to the SMC the algorithm first traverses each program point in

the DPRG in the partial order of their timestamps. In the first traversal it transfers variables to the SMC

in decreasing order of their frequency of access. This frequency is computed at compile time by profiling the

application. The second time before transferring a variable to the SMC the algortihm checks the cost and
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benefit model, as described above, and transfers and evicts only if its feasible. An extension is presented

to include program code for allocation to the SMC. It is not clear from the paper [53] if the authors have

incorporated this extension in the implementation before evaluating it.

SMC-As-FC: Baiocchi et al [7] presents a technique to manage a fragment cache (FC) in dynamic binary

translators (DBT) using SMC with the help of flash and external memory in an ES. A FC is used to keep

dynamically translated instructions called fragments which are the application’s translated code working

set to keep the DBT from retranslating the previously translated code. Their initial experiments without

optimizations show that having FC in the external memory is better than FC in the SMC. Based on these

experiments and results following three optimizations are applied to improve the use of FC in the DBT using

SMC. These optimizations are implemented using Strata [45], a cross platform infrastructure for building a

DBT:

• Footprint Reduction: The DBT uses a trampoline (A short snippets of code) for translating the target

at the end of a basic block. In the case of a branch taken it adds a branch instruction to the new target

and in the case of a branch not taken it returns control to the DBT. Depending on the number of basic

blocks these trampolines can expand the instruction count in the program. To reduce this instruction

count only one trampoline function is used that can be shared by all the branches. For speed this

function resides inside the SMC.

• Victim Compression: The FC is divided into two regions: a compressed fragment region (CFR); and

an uncompressed executable fragment region (EFR). The CFR is used to save the evicted fragment (A

victim - a block evicted from the cache upon replacement) from the FC. The basic idea is to store the

victim in the CFR after compressing it for easy retrieval. Compression and decompression is done in

the external memory. In our opinion if the time for compressing and decompressing the fragment when

needed is less than the time for accessing and retrieving the fragment from the external memory, then

this scheme is profitable. Using this cost model before this optimization could give better results. We

are not clear if the scheme presented follow this model. The FC is partitioned dynamically between the

CFR and the EFR. More priority is given to the EFR. When the FC is filled completely with the EFR

then the EFR is compressed and becomes the new CFR.

• Fragment Pinning: A fragment in FC can be pinned (Locked) so that it persists across different flushes

to avoid unnecessary overhead of compressing and decompressing such a fragment. A pinned fragment

region (PFR) is used for this purpose and is inter mixed with the EFR for best utilization. Victims from

the previous FC which are part of the working set of the DBT are one of the targets for pinning. Pins are

released when the size of the PFR reaches a certain threshold value, which is computed experimentally.

There is no specific policy (For example in what order) given in the paper for releasing the pins.

After applying these optimizations the results improved. But the improvement in speedup compared to

using FC in external memory on average is just 2% for a SMC of size 32 KB. Other sizes of SMC show

a reduction in speedup compared to FC in the external memory. The only major improvement that was

obsereved is that if SMC is used for FC than the amount of external memory required for a DBT is decreased.
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In our opinion if size of the SMC and the FC allows, it is beneficial to keep more than one CFRs (Old

copies of EFR). This may produce better results if the data presents such a temporal locality. But will increase

the complexity of the SMC management for the DBT.

SMC-GPU: Silberstein et al [49] presents techniques to efficiently utilize SMC implemented in Nvidia’s

GPU, which is based on a parallel computing architecture called CUDA [25], for memory bound algorithms.

CUDA is a computing engine in Nvidia’s GPUs which is available to the programmers through the C language

with Nvidia’s extensions and the OpenCL [23] framework. CUDA SDK (Software development kit) is available

for Windows and Linux. CUDA program is run by the hardware (Only Nvidia’s GPUs) on multiple threads.

CUDA exposes a fast user manageable shared cache which can be used as a SMC among a subset of threads.

Here we just give an overview of the cache management strategy and the performance achieved. Pre-

processing is done once by the CPU for deciding when and which data to be placed in the cache and then

this information is passed to the GPU in the form of metatables. The GPU uses metatables to manage the

fetching and replacement of the data in the cache to be processed by the threads. The preprocessing also

includes the determination of the replacement policy for each function in the program. If a function exceeds

the size of the cache available that function is accessed directly from the main memory bypassing the cache.

Spatial locality is improved by restructuring the data layout. With this user managed cache on average they

achieve more than 150% performance compared to the use of texture cache [24]. Textures are read only data

and present spatial optimization oppportunities. Textures are used to map images onto the surfaces of three

dimensional objects. For example mapping a grassy image to an uneven surface of a mountain. A texture

cache in a GPU provides faster access to these textures.

SMC-Heap: There are two efforts which deal with heap data allocation to SMC. The first [20] does not

allocate full heap data to SMC whereas the second [35] provides allocation of full storage of heap data to

SMC. Therefore we just discuss the second effort that presents a SMC memory allocator (SMA) similar to

the C language malloc() function. The SMA works as follows:

For large allocations it divides the SMC into fixed number of blocks. The memory is allocated out of these

blocks. For small allocations a block is divided into sub-blocks of the size requested, which should be equal

to a valid size, if not then it is rounded to a valid size. Valid size for the SMA is a power of two. The SMA

uses block sizes of 128 bytes and sub-block sizes of 8, 16, 32 or 64 bytes. In this way, SMC can be used as a

memory pad where data is allocated by the software. It provides simple and semi-automatic management of

SMC. It may not give good performance compared to hardware caches but it is space efficient.

The experiments and results are shown for Intel IXP network processor, which utilizes Intel XScale [28]

microprocessor core. The IXP is a heterogeneous multicore processor with two SMCs per core. One local and

one shared. The results are compared with Doug Lea’s malloc [31] implementation, which is the standard

implementation used in Linux allocator in the GNU C library. According to the paper this is considered as

one of the fastest and space efficient allocators available. The SMA on average is 27% better in memory

allocation time and 64% better in memory freeing time. It’s not clear how much this improvement is due

to their allocation algorithm and how much to the fact that, compared to the SMA, the Doug Lea’s malloc

cannot use the on core SMC of the Intel IXP processor.

SMC-SMT: Metzlaff et al [36] presents a design for a SMC that is managed dynamically in hardware to
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provide predictable timing behavior for a SMT processor. The SMC designed gets help from the software in

the form of a flag i.e; why we call it SMC in this paper. The SMC is called function SMC because it allocates

a complete function inside the SMC.

Each processor, implemented using SystemC processor simulator, has a local SMC with a controller (SPC)

which is responsible for all reads and writes from and to the SMC. The execute stage of the pipeline passes

the function call and return information to the SPC which then loads the current function and any function

that is nested in the current function. The SPC also maps a function to the SMC. If the function size is

greater than the SMC, SPC wraps around and copies the left over instructions from the start overwriting

some of the instructions of the current function. This can create some complications. For example the size

of the largest function in the application must not exceed the size of the SMC. This is a constraint of this

paper which in our opinion may limit the use of this scheme to relatively few applications. SPC does not

have any information at runtime about the size of the function to be copied. This information is passed via

the compiler through a flag. This flag indicates the end of the function in the linked code.

The selected benchmarks for experimenting list the largest function size. The comparison is done with a

system without on-chip cache. Experiments are carried out with different SMC sizes. SMC minimum size

is selected according to the largest function’s size listed. The scheme shows improved instructions per count

compared to the system without on-chip cache. On average improvement is over 100%. A comparison with

an on-chip locked cache could have produced more real results.

SMC-GC: Li et al [32] presents the first effort which maps the SMC management problem to the graph

coloring (GC) problem. GC is the way to color the vertices of a graph such that no adjacent vertices shares

the same color.

The promising idea presented is the partitioning of the SMC into a register file. That is how they map the

SMC allocation problem to register allocation and hence to graph coloring problem. The complete algorithm

for the SMC partioning is given in [33]. Here we illustrate it in Figure 2 and show that for some of the array

sizes the algorithm may not be able to utilize SMC space efficiently by showing some unused space in the

SMC with a simple example. Figure 2(a) shows the alignment of arrays ’A’, ’B’ and ’C’ at 8 bytes using the

size of the smallest array ’A’. The SMC shown in Figure 2(b) of size 1024 bytes is divided into 8 registers

each of size 128 bytes, because of the size of the smallest array ’A’. Array ’C’ whose original size is 668 bytes

fits into 6 registers with the last register having (96 + 4) bytes of unused space.

An interprocedural control flow analysis [2, 3] is performed to build an interprocedural CFG (ICFG). The

ICFG consists of CFGs of all the functions in the program and all possible interprocedural flow edges across

the CFGs. Liveness analysis is performed for arrays. An array is live at a program point if some of its

elements may be used (Read) before they are defined (Killed) in an ICFG. They split a live range of an array

into subranges, which can be allocated to different registers in the SMC. Only arrays in hot loops are splitted

and allocated. Profiling is used at compile time to find these hot loops.

The SMC partitioning and the live range splitting create arrays to be allocated to the SMC. Given these

arrays and the register file an existing graph coloring algorithm [39] is used to determine where these arrays

are going to reside in the SMC. The results are compared with [53] discussed as SMC-CT in this study. The

SMC-GC on average shows an improvement of almost 3% in speedup.
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672 bytes 
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(b) Partioning of of size 1024 bytes 
     File. Array ‘C’ fits into 6 registers with the last register
      having (96 + 4) bytes of unused space. 4 bytes
     added for alignment to array ‘C’.

SMC into a Register

R5

  Arrays        Original Sizes            Sizes in bytes after 
                        in bytes                aligned @ 8 bytes

     A                  124                             128

     B                  128                             128

     C                  668                             672

(a) Arrays ‘A’, ‘B’ and ‘C’ with there original and aligned
     sizes.

Figure 2: An Example of SMC Partitioning into a Register File

SMC-USize: Nguyen et al [38] presents the first effort which deals with an unknown size (USize) SMC

at compile time. The basis of their technique is a binary rewriter (BW). The BW computes the size of the

SMC and then accordingly modifies the code to fit the SMC size. Here we are going to look into three things:

how and where this BW gets installed; how the data and instructions are allocated to the SMC; and how the

executable is modified to make these changes.

The BW inserts code into the application executable for a customized installer. The installer is called just

before the main() routine in the application and it runs just after code is loaded into the memory. The SMC

size is calculated by making an OS call or by probing addresses in the memory using binary search.

The install time allocator does two jobs: profiling and allocation. Profiling is done at compile time which

computes the frequency of data access. Variables with greater frequency of access are allocated first to the

SMC. Other information that is required at install time like allocation and memory layout are also collected

at compile time for every possible SMC size. This information is stored in a compact form. This way lot of

computation and space is saved at install time. To further save space all the accesses of variables are stored

in a linked list.

The program code is divided into regions at compile time based on the frequency of access. At install time

these regions are placed in the SMC. To preserve the control flow branches are inserted at two places, which

is called code patching: start of region i.e, from the original location to the SMC; and end of region i.e, from

the SMC to the original location.

Lot of information required as described above is collected at compile time. The code needs to be compiled

to collect this information. Therefore only statically linked libraries with source code should be used for better

results. Such libraries are recompiled to include their variables in SMC allocation. Libraries without source

code are not optimized.

Results are compared with one of the author’s previous work [6] on SMC discussed as SMC-Optimal in
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this study, which requires the size of the SMC at compile time. On average results show a decline of −4% in

performance and a reduction of 5% in energy saving. We beleive the overheads are in computing the SMC

size at install time. Results are also compared with hardware cache and are not very promising. On average

results show a reduction of 3% in performance and an improvement of 8% in energy saving.

SMC-DLDP: This [16, 17] is the first effort which presents a dynamic technique to specifically deals with

data layout decision problem (DLDP) in the SMC for regular and irregular data access patterns usually found

in multimedia applications. DLDP is defined as a problem of finding a layout for data to fit in the memory,

in this case SMC, to maximize energy saving. There are two parts to the technique to solve this problem:

selection of data to be moved to the SMC based on the data access patterns; placement of this data in the

SMC to reduce memory fragmentation after solving DLDP.

Data selection (At compile time) algorithm depends on data reusability factor (DRF) and the lifetime

(LT) of a data element. Profiling is used at compile time to find the frequency of data access to compute the

DRF of a data element. DRF is a ratio of frequency of access of an element to its estimated size in words.

Data elements with DRF of more than 1 are selected. Usually these elements are large in numbers so a cluster

is formed, to move them to the SMC using DMA. The lifetime is computed in two steps: First LT of an

element is computed, which is the difference between it’s final and initial accesses. Then LT-D is computed,

which is the difference between LTs of two elements in an array. Now the data cluster is formed which is a

union of data elements that have the most beneficial LT-D. In this way two kinds, first using DRF and the

other using LT-D, of data clusers are formed.

The DLDP solver (At compile time) finds an order/layout for these clusters selected to fit them in the

SMC. The DLDP is formulated into a two dimensional (Time and space) knapsack problem. A heuristic

is given to solve this problem to find the locations, which is based on divide and conquer principle, and

then clusters are loaded to the SMC at these locations using DMA. For dynamic address translation of data

references, which are created by the DLDP solver, a address translation buffer in hardware is used to optimize

address generation code. This address translation buffer is implemented by a set of registers and is updated

by the operating system when the application is loaded. Replacement policy is decided at runtime but nothing

is mentioned about how and when the data is replaced in the SMC.

The scheme presented in [17] is an improvement over their previous scheme [16]. These improvements are

mentioned below:

• Tracking of data access patterns and data layout is changed from static to dynamic. To accomplish this a

data access record table (DART) is implemented in the hardware. The DART records the runtime data

access history, as memory addresses and frequency counters, to support the decision of data placement

at runtime by the operating system. Only highly accessed memory addresses (Called working memory

locations - WMLs) are kept in the DART, which are computed by profiling at compile time. The

operating system updates the memory addresses inside the DART.

• Introduction of new operating system components to automatically manage the contents of the SMC.

At runtime the operating system SMC manager performs two tasks: data transfer; and data access trace

comparison for selecting a data layout scenario. These scenarios are computed during compile time by
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the profiler and passed to the operating system before runtime.

SimpleScalar [5] is used for simulation and CACTI [48] for energy estimation. Comparisons, with different

hardware cache configurations using LRU replacement policy: 1, 2, 4, 8 way set associative and different

SMC sizes: 2, 4, 8 KB, are made. The results presented in [16]: improves 30% energy consumption compared

to caches, similar results are shown by [8] discussed as SMC-No-Cache in this study; on average improves

runtime by 18%, but 8-way set associative hardware cache gives better runtime on average 5% better than

using the SMC. The improvements carried out in [17] improves the overall results by 6% compared to [16].

SMC-MC: The SMC implemented in this [46] work is a 4-way set associative cache in the IBM Cell

processor [41] that has 8 general purpose and one special cores. Each of the 8 cores has its own local SMC

which uses DMA to access main memory. The 4-way set associative cache implemented in software use fully

associative replacement policy and hence gives a low cache miss overhead. A cache line table is used to map

the tag to the cache line.

The replacement algorithm used is a modification of the reuse replacement algorithm [42]. The original

reuse replacement algorithm keeps a reuse counter for each cache line starting with 0 and increments upto 3.

Looking for a victim cache it searches and evicts the first cache line with 0 reuse counter. While searching

it also decrements each of the non-zero reuse counters. The authors claim that this algorithm may introduce

more misses by selecting the zero counter. The replacement algorithm modify this and initializes the counter

to less than or equal to 3.

To avoid thrashing (Generation of cache misses when the working set of a parallel loop is greater than the

cache size) loop distribution/fission [2] is applied, which splits the loop into multiple loops to decrease the

working set. The authors present an adaptive algorithm to choose the cache line size and the replacement

policy. The algorithm learns and adapts to the characteristics of the specific loop. There are five cache line

sizes to select from. These are selected dynamically by running the loops and comparing the TPIs (Execution

times per iteration). The size with the lowest TPI is selected. This way an optimal size is selected for the

running loop. The replacement policy is selected out of: clock algorithm, LRU and FIFO in the similar way.

Eight OpenMP [11] applications are ported to the runtime developed for evaluation. The results are

compared against indirect indexed cache [26] discussed as SMC-IIC in this study. On average, the results

show an improvement of 20% over SMC-IIC. We believe the main reason is the tag comparison done in

SMC-IIC.

3 Classifications Developed

We develop general classifications also called parameters to distinguish, compare and analyze the sixteen

works discussed above. Table 1 lists these works based on these classifications. Section 4 provides analysis

and gives some of the comparison examples using this table. As mentioned initially in the paper, the most

important aspect of managing a SMC is to allocate as much program code and data to the SMC as possible.

Our classifications are mostly based on memory allocations and are defined below:

1. Allocation Kind Static: Memory allocation can not change at runtime, i.e; the cache blocks cannot be
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replaced. It’s easier to manage but is not very flexible.

2. Allocation Kind Dynamic: Memory allocation can change at runtime, i.e; the cache blocks can be

replaced. It’s difficult to manage but is more flexible.

3. Allocation Type Code: If program instructions are allocated to the cache.

4. Allocation Type Data: If program data is allocated to the cache. We further subdivide data allocation

into three categories:

(a) Variables: These can be scalars or arrays and local or global, and are allocated at compile time or

runtime.

(b) Stack: Data using the stack and is allocated at compile time or runtime.

(c) Heap: Memory area allocated during runtime and used as dynamic memory.

5. Allocation Method Static: Techniques used for allocation are carried out at compile time.

6. Allocation Method Dynamic: Techniques used for allocation are carried out at runtime.

7. Profiling Static: Compile time profiling. The Program is executed with generated sets of input data to

collect profiling information.

8. Profiling Dynamic: Runtime Profiling. Profiling information is collected as the program executes with

actual (Real) input data.

9. System Compared: The System that is compared with the system developed/presented.

10. Results: We divide the results compared to the system above into two categories:

(a) Performance: An improvement or a reduction in the execution time.

(b) Energy Saving: An improvement or a reduction in the energy saved.

(c) We use the following grades to compare the above two: A: (100% and up) B: (50% to 99%) C: (0%

to 49%) D: (−1% to −49%) F: (−50% and less)

4 Synthesis

In this Section we use the classifications defined above to distinguish, compare and analyze the approaches

used for SMCs as described in Section 2. In this synthesis we determine and reason some of the basic

characteristics of a framework for optimizing the management of SMCs, and list them at the end of this

Section.

All the work discussed in this paper uses software to manage SMCs and over half (Seven) of them use both

software and hardware as shown in Table 1. One of them SMC-SMT is implemented in hardware (Simulated)

but needs a flag from the compiler to be passed to indicate the size of a function. Less than half (Five) of the

schemes use profiling which is of type static as shown in Table 1.



Only two, SMC-VMP and SMC-IIC, of these works are done for desktops with one of them, SMC-VMP,

designed for a multiprocessor. SMC-VMP showed poor results and SMC-IIC did not prove to be successful,

results shown in column PI (Performance Improvement) of Table 1. As mentioned in SMC-VMP the reason

for poor performance is the lack of a good software system or a programming environment for managing

SMCs.

There are two schemes which based on our study get a grade of A in the results as shown in column PI of

Table 1. One is SMC-SMT which is compared with a system using no cache and the other is SMC-GPU which

is compared with a system using texture cache. So out of the sixteen works surveyed we consider SMC-GPU to

give the best results. We list SMC-GPU as an ES in Table 1 because it is designed for GPUs, special purpose

graphic processors, that are embedded inside either a GPP or a high performance ES. These GPUs are from

Nvidia Corporation, which provides one of the best graphic programming environments including software

and hardware called CUDA [25] as discussed before. One of the disadvantages of CUDA is that it is highly

customized and can only be used for Nvidia’s GPUs. Other significant programming models are: Brook [12]

used by AMD and RapidMind [34] used by the new language called Ct [22], currently under development at

Intel, specifically designed for GPP. Ct is an extension of C/C++ language and has a compiler and a runtime

to automatically parallelize and optimize the program, that is written for a single core CPU, for a multi core

CPU. It is not clear if these models provide any help for managing the SMCs.

There are also some, SMC-GPU, SMC-MC and SMC-DLDP, successful efforts in multicore processors but

are all developed for ES. If SMCs can be successful in ES they can also be successful in GPPs. Unlike ES,

because of the nature of applications, for any system software to be successful in GPPs it has to provide

an easy to understand and programmable framework and a transparent software/hardware interface to the

application programmer.

Less than half (Six) of the work discussed use profiling and are all type static, Table 1. The reason for

this small number is that most of the SMCs are used in ES as shown in Table 1. ES are designed to run

specific applications. Its easier to optimize the program for a specific application than for a general purpose

application without profiling information.

Now we list and discuss, based on our classifications and the analysis above, what we consider to be some

of the basic characteristics of a framework for optimizing the management of SMCs:

1. Transparent Software/Hardware Interface: We believe this area is one of the most important

factor for improving the use of SMCs especially in a GPP. The best example of a transparent soft-

ware/hardware system for managing SMCs discussed in this paper is SMC-GPU. The CUDA framework

used in SMC-GPU is highly optimized for and only runs on Nvidia’s GPUs. Other significant program-

ming models not discussed in this paper are: Brook [12] used by AMD and RapidMind [34] used by the

new language called Ct [22], currently under development at Intel, specifically designed for multi core

CPUs. They are still under development and we are not sure how much support they provide for SMCs.

Most of the successful work done in multicore processors is in ES discussed as SMC-GPU, SMC-MC and

SMC-DLDP in this paper. Application programmers for GPP need a general easy to understand and

programmable interface. So making it general and transparent is one of the major hurdles for adapting

SMCs to a GPP.
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Allocation Results

SMC Type Kind Type Method 1Prof Compared With 2PI 3E 4H/S ES GPP

SMC-VMP Dynamic 7 Dynamic 7 Traced simulations D 7 3 7 3

SMC-IIC Dynamic 7 Dynamic 7 5HC C 7 3 7 3

SMC-LT Dynamic 6Var Static 7 7HO SMC/SMC HC D/C 7 7 3 7

SMC-No-Cache Static Code,Data Static Static HC 7 C 7 3 7

SMC-Optimal Static Var,Stack Static Static Main memory B 7 7 3 7

SMC-ICache-1 Dynamic Code Dynamic 7 HC D 7 3 3 7

SMC-ICache-2 Dynamic Code Dynamic 7 HC D 7 3 3 7

SMC-CT Dynamic Code,Var,Stack Static Static SMC-Optimal/HC C/C 7 7 3 7

SMC-As-FC Dynamic Code Dynamic 7 FC in Main Memory C 7 7 3 7

SMC-GPU Dynamic Var Dynamic 7 Texture cache A 7 3 3 7

SMC-Heap Dynamic Heap Dynamic 7 8DLMalloc C 7 7 3 7

SMC-SMT Dynamic Code Dynamic 7 No cache A 7 3 3 7

SMC-GC Dynamic Var Static Static SMC-CT C 7 7 3 7

SMC-USize Static Code,Var,Stack Static Static HC/No cache D/C C/C 7 3 7

SMC-DLDP Static Var Static Static HC C C 3 3 7

SMC-MC Dynamic Code Dynamic 7 SMC-IIC C 7 3 3 7

1 Profiling 2 Performance improvement 3 Energy saving
4 Implemented using both hardware and software 5 Hardware cache 6 Variables
7 Hand optimized SMC/SMC as hardware cache 8 Doug Lea’s malloc() [31]

Table 1: Allocations, results and platforms supported by the SMCs based on the classifications
developed in Section 3

2. Dynamic Profiling: Profiling is a very important part of any software optimizing system. Dynamic

profiling provides more exact information than static profiling. The challenge of dynamic profiling is that

it takes time and space and hence increases the execution time and area of the running program. [47]

presents a dynamic application profiler for space conservation and [10] is a recent effort that presents

a dynamic fast profiler for data locality. Almost all modern processors have hardware performance

monitors/counters that can be used for profiling the running program [50, 4]. But to our knowledge

there is no such effort where they have been used for profiling to optimize the use of SMCs. We did not

find any work that uses dynamic profiling for SMC management. We believe this is one of the major

areas where more research is needed.

3. Dynamic Memory Allocation: The ideal situation would be to allocate all the code and data of the

current working set of the running program to the SMC without any delay. Much work has been done

on allocation of code and data including stack and global variables to the SMC. There is a need to do

more work on SMC management for heap data. The only work we know of on allocating the heap to

the SMC is SMC-Heap. The other areas are the kind and method of allocation. Based on the results

presented in Table 1 we believe that both the method and the kind of allocation should be dynamic.

Dynamic allocation takes time and can increase the execution time of the running program. To reduce

time, we recommend obtaining help from the hardware as is done in some of the schemes listed in Table

1 but should be transparent to the application programmer especially for the GPP as described above.
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4. Flexible: With different sizes of SMCs and the different data patterns presented by applications running

on ES and GPP, there is a need for the SMC management framework to be flexible. This will enable

it to learn, change and adapt to these changing environments. This is done in SMC-MC, which adapts

and selects different cache line sizes and replacement policies based on the loop characteristics, and the

technique presented in SMC-USize works with an unknown SMC size.

5 Conclusion

We have analyzed the current trends and reasoned about some of the basic characteristics of a framework

for managing and optimizing SMCs in ES and GPP. A general classification has been developed to compare,

analyze and distinguish these trends. Table 1 lists the division based on these classifications for easy analysis

and comparison.

With aggressive clock rates, the average access time to a L1-cache will typically be 3 - 7 cycles and 30 -

50 for L2-caches, which will adversely affect the average number of instructions per cycle [1]. Conventional

processors at best will be able to achieve an annual gain of 12% rather than 55% in speed [1] if Moore’s Law

continues to apply to chip density. This is the main reason multicore processors have already taken over from

single core processors. The on-chip memory system will be the major bottleneck in future processors and

there is a need to do more research and work on managing these memories especially for GPP.

We hope this paper will not only serve as a collection of recent references, a source of information and clas-

sifications for easy comparison and analysis but also a motivation for improving SMC management framework

for ES and introducing and making it successful for GPP.
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