
1

Browser-based Software for Technology Transfer

Judith Bishop
Jonathan de Halleux

Nikolai Tillmann
Microsoft Research
Redmond, WA, USA

jbishop@microsoft.com

Nigel Horspool
Department of Computer Science
University of Victoria, BC, Canada

nigelh@cs.uvic.ca

Tao Xie
Computer Science Department

North Carolina State University, USA
xie@csc.ncsu.edu

Don Syme
Microsoft Research

Cambridge, UK
dsyme@microsoft.com

ABSTRACT
Technology transfer is typically viewed as being from academia
to industry but it can indeed go in either direction. Many of the
same challenges then apply – platform suitability, timeliness,
support, and community building. In this paper, we describe
recent efforts to transfer technology for research and teaching
from an industrial research laboratory to universities, and
discuss some of the key success factors and major challenges.
Examples quoted include Try F# and Pex4Fun.

Categories and Subject Descriptors
D.2 Software Engineering, K.6 Management of Computing and
Information Systems

General Terms
Human Factors, Languages

Keywords
Technology transfer, browser-based software, F#, Pex4Fun

INTRODUCTION
Technology transfer is most often viewed as being from a
research laboratory to a product group, or from a university
research project to industry. Recently, we have been involved in
instances of another kind of transfer, from a research laboratory
to universities. There are many reasons why this kind of transfer
takes place. Sometimes, academics want to make use of a
research tool reported in papers. Then they can usually find the
tool, download it, and work on it independently.

On the other hand, industrial researchers are increasingly
finding that in order to collaborate with university researchers,
both need to use the same fairly complex underlying tools.
Transferring those tools sometimes means transferring whole
platforms as well. Furthermore, there is the issue of training the
students who will work on the project. Clearly, it would be
better if the students had prior exposure to the technology. With
the wide variety of courses taught in universities, this

requirement can only be met for very fundamental technologies.

Adoption of tools and technologies widely perceived to be
community-based and supported on many platforms, such as
Eclipse, Java and Linux, has been easy in principle for
universities, but at the start of their lives the tools have required
considerable support. Specifically, we have noticed that
languages and tools built on the Common Language
Infrastructure (CLI) platform face resistance in universities,
despite the widespread availability of both professional and
open-source implementations of these languages, the respect
that the language and framework designs themselves have from
the academic community, and their very widespread uptake in
industry. Without delving into the reasons or nature of this
resistance, this paper looks at recent attempts to overcome it,
and endeavours to draw general conclusions about how
software can be adapted to lower the barriers and make it more
accessible to a wider audience.

TYPES OF SOFTWARE
The software for language implementations that we are
considering for use by universities is grouped depending on
whether it requires

1. only a browser, e.g., Explorer, Firefox, Safari
2. a platform and language(s), e.g., a CLI

implementation and C# or F#
3. an integrated development environment (IDE), e.g.,

Visual Studio or Eclipse
From the point of view of broad acceptability, Type 1 language
implementations have the advantage of platform independence
and simplicity of installation. A disadvantage is that the
browser environment is limited in functionality.

For Type 2 language implementations, runtime environments
such as .NET, Mono, and the JVM are now commonly part of
OS installations or are readily available as add-on packages.
Further, Type 2 software is also platform independent, because
implementations of the CLI and JVM are available for
essentially all modern operating systems. However, the
platform dependencies, installation mechanisms, and early
learning experience for Type 2 software is still generally more
intricate than Type 1 software. If our goal is for students to
acquire direct industry-relevant skills, Type 3 language
implementations are clearly to be preferred, since the majority
of professional programmers use IDE tools as a central part of
their work. Further, this situation does not appear to be
changing rapidly.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAICSIT '11, October 3–5, 2010, Cape Town, South Africa.

2

Figure 1 Screenshot of TryF#

While Type 3 implementations are usually available for free
to universities and people learning languages (e.g., Visual C#
Express and MonoDevelop), Type 3 software usually requires
additional downloads, and may be, to some extent, tied to
particular platforms. Nevertheless, many would argue that the
ideas behind the tools have a wide applicability.

In 2009, researchers in Microsoft Research recognized the
limitations of software in types 2 and 3 for disseminating
research advances in programming languages to wider
communities and started to seek alternatives. We wanted to
find a way of presenting the tools without rewriting them or
giving up the powerful base of the CLI platform. The result
was a concerted effort to make much more use of browser-
based software. Other browser-based language software
exists, e.g., TryPython and TryRuby, but our twin goals were
to use the method seriously for cross-platform compatibility
and to introduce some fun into programming.

BROWSER-BASED SOFTWARE
In the past year, we have developed, tested, and deployed two
kinds of browser-based software. Two different models for
using browsers as the container for the software emerged.

The first is the more sophisticated. A Silverlight/Moonlight
control is created to download a complete compiler into a
sandbox on the machine. All interaction with the compiler,
along with all running of programs, is still done via the
browser, any browser. All computation is done on the client.

The second option is to maintain a server, or perhaps a
presence on the cloud, and to provide a browser experience
that accesses the original system running there.

There are pros and cons to both options. Providing the
software to a heterogeneous world of customers requires
effort in advance, but no ongoing hardware (apart from the
download service). Maintaining a server is easier to set up but
has the scalability issue. The server option also has one great
advantage: data can be gathered about usage of the software.

Try F#
F# [1] is a functional programming language developed by
Microsoft Research. Try F# (www.tryfsharp.org) is a tool for
running F# in the browser. It was completed in 2011 and is
undergoing deployment and testing in the field. When the
browser contacts the TryFSharp website, the Silverlight
control decides which version of the compiler to download,
based on the machine’s operating system. The software
running in the browser contains not only the compiler, but
also a tutorial on the language and a specially written (very
important [2]) canvas library for graphical applications. The
browser window runs in one, two, or three sections on
request. Figure 1 shows a screenshot of TryF#.

Pex4Fun
Pex is a Visual Studio 2010 Power Tool developed by
Microsoft Research to help unit testing of .NET applications.
It can also be launched from the command line. Thus it can
run as Type 2 or Type 3 software. Pex4Fun
(www.pex4fun.com) [3,4] is a radically simplified version of
the fully featured Pex that is accessed via a browser and all
the work happens “in the cloud” (actually on one of
Microsoft Research servers). The idea of Pex4Fun is to create
a game out of unit testing by providing existing code puzzles
in C#, Visual Basic, or F# for users to determine from the unit
tests what code needs to be added or changed. Figure 2 shows
a screenshot of Pex4Fun.

ASSESSMENT
Browser-based software has proved liberating for tool writers
in Microsoft Research. In the Eclipse environment, plug-ins
were an easy way of distributing software, but Eclipse is
currently far more used in academic research circles as an IDE
than Visual Studio is. Now, nearly all the tools from the
Research in the Software Engineering (RiSE) Group are
available via a portal on www.rise4fun.com. Curious users
can try them out, and if they become committed, they can
switch to the full version on the full platform.

3

Figure 2 Screenshot of Pex4Fun

Advertising browser-based software via social media is easier,
as is collecting statistics on its use. Thus building a
community that takes over the software, which is free or even
open-source, is accelerated. In the case of Pex4Fun (which
has been running for longer), a typical compliment made
online is shown in Figure 3.

Our plans are to further develop both the Try- and –4Fun
models further and to investigate how they compare in terms
of scalability, maintainability and flexibility to their
traditional download versions.

Keith_Flo: This is awesome! I haven't seen anything this
cool in a long time! ... People have written 'Cloud' based
editors and compilers but this is a whole new level of
cool! .. intellisense, multi-languages supported,
background compilation .. a debugger is coming .. Wow!

Figure 3. Comment on Pex4Fun

ACKNOWLEDGMENTS
We would like to thank Dean Guo, Dennis Harding, Laurent
le Brun, Joe Pamer and Christophe Poulain from Microsoft
who wrote and managed Try F#.

REFERENCES
[1] F# 3.0 Reference Manual:
 http://research.microsoft.com/en-

us/um/cambridge/projects/fsharp/manual/spec.pdf
[2] Tim Lammarsch, Wolfgang Aigner, Alessio Bertone,

Silvia Miksch, Thomas Turic, Johannes Gaertner, A
Comparison of Programming Platforms for Interactive
Visualization in Web Browser Based Applications, iv,
pp.194-199, 2008 12th International Conference
Information Visualisation, 2008

[3] Nikolai Tillmann, Jonathan de Halleux, Tao Xie, Pex for
Fun: Engineering an Automated Testing Tool for Serious
Games in Computer Science, MSR-TR-2011-41, March
2011

[4] Nikolai Tillmann, Jonathan de Halleux, Tao Xie:
Pex4Fun: Teaching and learning computer science via
social gaming. CSEE&T 2011: 546-548

