ICME 2004 Tutorial: Audio Feature Extraction

George Tzanetakis
Assistant Professor
Computer Science Department
University of Victoria, Canada

> gtzan@cs.uvic.ca
> http://www.cs.uvic.ca/~gtzan

Bits of the history of bits

01011110101010

Hello world

Web

Multimedia

Understanding multimedia content ->

Tutorial Goals

> Overview of state of the art
> Fundamentals
> Technical Background
» Some math, computer science, music
> Shift emphasis from audio coding/compression to audio analysis
, There is more to audio analysis than MFCCs

Some simple but important observations

> Analysis/Understanding require multiple representations - no "best" one
> Coding/Compression/Processing typically search for the "best" "optimal" way to do things
> Paradigm shift is necessary to make multimedia more than just lots of numbers
> !!! MACHINE LEARNING

My background - MIR

> Database of all recorded music
> Tasks: organize, search, retrieve, classify recommend, browse, listen, annotate
> Examples:

Feature extraction

Outline

> Introduction
> Signal Processing 30 min
> Source-based
> Perception-based 30 min
> Music-specific 20 min
> Fingerprinting and watermarking 25 min
> Sound Separation and CASA
> Future work and challenges
10 min

20 min

25 min
20 min

Signal Processing

> Sound and Sine Waves
> Short Time Fourier Transform
> Discrete Wavelet Transform
> Fundamental Frequency Detection

Understanding Sound

> Longitudinal wave - pulsating expanding sphere
> 344 m (1128 feet) / second (at 20 Celcius)
> Reflections
> Sound production, propagation and perception are to a certain degree linear phenomena

Time-domain waveform

Time
Decompose to building blocks that are created in a regular fashion

\square

Spectrum

Recipe for how to combine the building blocks to form the signal

Different view of the same information

Linear Systems and Sine Waves

Period $=1 /$ Frequency

sine wave -> LTI -> new sine wave

Time-Frequency Analysis Fourier Transform

$$
f x=\sum_{n=0}^{\infty} a_{n} \cos n * x+\sum_{n=0}^{\infty} b_{n} \sin n * x
$$

$$
f t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f \omega e^{-i \omega t} d t
$$

$$
f \omega=\int_{-\infty}^{\infty} f t e^{i \omega t} d t
$$

$$
\mathrm{e}^{i \theta}=\cos \theta+i * \sin \theta
$$

Any periodic waveform can be approximated by a number of sinusoidal components that are harmonics (integer multiples) of a fundamental frequency

Non-periodic signals

We force them to be periodic by repeating them to infinity

Short Time
 Fourier Transform

Short Time Fourier Transform II

FT = global representation of frequency content

$$
\text { Sf } u, \omega=\int f t g t-u \mathrm{e}^{-i \omega t} d t
$$

Time - Frequency
L2 Heisenberg uncertainty

$$
\sigma_{t} \sigma_{\omega} \geq 1 / 4
$$

STFT- Wavelets

Time - Frequency Heisenberg uncertainty

$$
\sigma_{t} \sigma_{\omega} \geq 1 / 4
$$

A filterbank view of STFT and DWT

The Discrete Wavelet Transform

Octave filterbank

19

Sinusoids + noise modeling

Deterministic
Part

Stochastic
Part

Grey's timbrespace (1975)

Spectral Flatness

Analysis and Texture Windows

Running multidimensional Gaussian distribution (means, variances over texture window)

Speech

Analysis windows
Texture windows
\square

20 milliseconds
40 analysis windows

Fundamental

Frequency Detection

Time-domain
Frequency-domain
Perceptual

Autocorrelation
Peaks at multiple of
the fundamental frequency

$$
r_{x}=\sum_{n=0}^{N-1} x \quad n \quad x \quad n+l, l=0,1, . . L-1
$$

ZeroCrossings
Rhythm ->~20 Hz Pitch 瞌
(created by Roger Dannenberg)

Demos I

> Phase vocoder
, Spectrograms - time frequency tradeoffs
> Wavelet decomposition

Source-based approaches

> Linear Prediction
> CELP, GSM
> Isolated tone musical instrument recognition

Harmonic Partials

> Instruments and the voice are harmonic oscillators (solution to pdf)
> Partials (peaks in the spectrum)
> Harmonic Partials are integer multiples of the first partial or fundamental frequency

Helmholz - timbre is based on the relative weights of the harmonics

Voice production

> Vocal Folds
> breath pressure from lungs causes the folds to oscillate
» oscillator driven by breath pressure acts as excitation to the vocal folds

> Vocal Tract
> tube(s) of varying cross-section exhibiting modes of vibration (resonances)
» resonances "shape" the excitation

Formant Peaks Resonances

Modes/resonances are the result of standing waves constructive interference - boosted regions of frequency

Vocal tract is essentially a tube that is closed at the vocal fold and open at the lips
modes $=$ odd-multiples of $1 / 4$ cycle of a sine wave ($\mathrm{F} 1=\mathrm{c} / \mathrm{l} / 4$) $\mathrm{l}=9 \mathrm{in}$ $375 \mathrm{~Hz}, 1125 \mathrm{~Hz}, 2075 \mathrm{~Hz}$

Formants

From "Real Sound Synthesis for Interactive Applications" P. Cook, A.K Peters Press, used by permission

Linear Prediction Coefficients

Source

$$
s_{n}^{\prime}=\sum_{i=1}^{p} a_{i} s_{n-1}
$$

Filter

$H z=$| 1 |
| :---: |
| $1-\sum_{i=1}^{p} a_{i} z^{-i}$ |

Original
Resynthesized with impulses/noise

Variations

> Perceptual Linear Prediction
> RASTA - Relative Spectral Transform -Perceptual Linear Prediction
> Take advantage of HAS characteristics
> CELP (Code Excited Linear Prediction)
> better modeling of excitation
, GSM

CELP

> Problems with LPC
> tube is not one tube but two (nose)
> buzz is not buzz
> everything goes into residue
> Codebook Excitation
> table of typical residue signals
> one fixed
> one adaptive

Isolated Tone Instrument Classification

> Important step for music transcription
> Hierarchical classification
> Family: bowed, wind etc
> Instrument: violin, flute, piano etc
> Spectral
> Temporal
> temporal centroid, onset time

MPEG-7 Audio Descriptors

> Low-Level Audio Descriptors
> Waveform, Spectral
> Spectral Timbral (centroid, spread)
> Temporal Timbral (temporal cntrd, log-attack)
> High-Level Description Tools

- Sound recognition and indexing
- Spoken content
> Musical instrument timbre
> Melody description

Principal Component Analysis

MPEG-7 Spectral Basis Functions

typical: 70\% of original 32-dimensional data is captured by 4 sets of basis functions and projection coefficients

Each spectrum can be expressed as a linear combination of the basis

Perception-based approaches

> Pitch perception
> Loudness percetion
> Critical Bands
> Mel-Frequency Cepstral Coefficients
> Masking
> Perceptual Audio Compression (MPEG)

The Human Ear

Pinna
Auditory canal
Ear Drum
Stapes-Malleus-Incus (gain control)
Cochlea (freq. analysis)
Auditory Nerve ?
Wave travels to cutoff slowing down increasing in amplitude power is absorbed

Each frequency has a position of maximum displacement

Masking

$$
\begin{aligned}
\text { Two frequencies } & ->\text { beats } \\
& ->\text { harsh } \\
& ->\text { seperate }
\end{aligned}
$$

Inner Hair Cell excitation
Frequency Masking
Temporal Masking

Pairs of sine waves (one softer) - how much weaker in order to be masked ? (masking curves) wave of high frequency can not mask a wave of lower frequency

Masking Demo

High sine waves mask low: 500 Hz tone at 0 dB with lower tones at $-40 \mathrm{~dB}, 300,320,340,360,380,400,420,440,460,480 \mathrm{~Hz}$

Low sine waves mask hih: 500 Hz tone at 0 dB with higher tones at $-40 \mathrm{~dB}, 1700,1580,1460,1340,1220,1100,980,860,740,620 \mathrm{~Hz}$

From "Music, Cognition and Computerized Sound" P. Cook (Editor) MIT Press

Music,
Cognition, AND Computerized Sound

Critical Bands

> Critical bandwidth = two sinusoidal signals interact or mask one another
> Bark scale (24 critical bands)
> $[0,100,200,300,400,510,630,770,920,1080$, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700]
> samplings of a continuous variation in the frequency response of the ear to a sinusoid or narrow band process
> there is no discrete filterbank in the ear

Fletcher-Munson Curves

Loudness is a perceptual (not physical) quantity i.e two sound with same SPL different frequencies are perceived to have different loudness (used in PLP)
for a soft sound at 50 Hz to sound as loud as one at 2000 Hz 50 dB more intense (100,000 times more power)

Pitch Perception I

> Pitch is not just fundamental frequency
> Periodicity or harmonicity or both?
> Human judgements (adjust sine method)
> 1924 Fletcher - harmonic partials missing fundamental (pitch is still heard)
> Examples: phone, small radio
> Terhardt (1972), Licklider (1959)
» duplex theory of pitch (virtual \& spectral pitch)

Pitch Perception II

> One perception - two overlapping mechanisms
> Counting cycles of period $<800 \mathrm{~Hz}$
> Place of excitation along basilar membrane > 1600 Hz

Mel Frequency Cepstral Coefficients

Mel-scale
Mel-filtering
13 linearly-spaced filters
27 log-spaced filters

Cepstrum

Measure of periodicity of frequency response plot

$$
\begin{aligned}
& \mathrm{S}\left(\mathrm{e}^{\mathrm{j} \theta}\right)=\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \theta}\right) \mathrm{E}\left(\mathrm{e}^{\mathrm{j} \theta}\right) \\
& \log \left(\left|\mathrm{S}\left(\mathrm{e}^{\mathrm{j} \theta}\right)\right|\right)=\log \left(\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \theta}\right)\right|\right)+\log \left(\left|\mathrm{E}\left(\mathrm{e}^{\mathrm{j} \theta}\right)\right|\right)
\end{aligned}
$$

$$
\mathrm{H} \text { is linear filter, } \mathrm{E} \text { is excitation }
$$

(homomorphic transformation - the convolution of two signals becomes equivalent to the sum of their cepstra)

Aims to deconvolve the signal (low order coefficients filter shape - high order coefficients excitation with possible F0)
Cepstral coefficients can also be derived from LPC analysis

Discrete Cosine Transform

> Strong energy compaction
> For certain types of signals approximates KL transform (optimal)
> Low coefficients represent most of the signal
> Can throw high coefficients
> MFCCs keep first 13-20
> MDCT (overlap-based) used in MP3, AAC, Vorbis audio compression

Short MPEG Audio Coding Overview (mp3)

MPEG Perceptual Audio Coding

Psychoacoustic Model

» Each band is quantized
> Quantization introduces noise
» Adapt the quantization so that it is inaudible
» Take advantage of masking
> Hide quantization noise where it is masked
> MPEG standarizes how the quantized bits are transmitted not the psychoacoustic model - (only recommended)

MP3 Feature Extraction

Pye	ICASSP 00
Tzanetakis \& Cook	ICASSP 00

> Feature extraction while decoding MPEG audio compressed data (mp3 files)
> Free analysis for encoding
> Space and time savings

Music-specific Audio Features

> Beat extraction and rhythm representation
> Multi-pitch analysis and transcription
> Chroma
> MPEG-4 Structured Audio
> Similarity Retrieval
> Genre Classification
> Score following

Importance of Music

> 4 mCD tracks
> 4000 CDs / month
> 60-80\% ISP bandwidth
> Napster- 1.57 m sim.users (00)
> 61.3m downloaded music (01)
> Kazaa - 230 m downloads (03)
> Global, Pervasive, Complex

Traditional Music Representations

GUIDO Noteserver. Powered by the SALIERI-Project © http://WWw.informatik tu-darmstadt de/AFS/SALIERI

Fast Latin Jazz (o- $0_{0} 120$)
Tritro isolo pieral
(ACD:

Rhythm

> Rhythm = movement in time

> Origins in poetry (iamb, trochaic...)
> Foot tapping definition
> Hierarchical semi-periodic structure at multiple levels of detail
> Links to motion, other sounds
> Running vs global

Alghoniemy, Tewfik WMSP99
 Dixon ICMC02
 FTPDt_
 Gouyon et al
 DAFX 00
 Laroche
 WASPAA 01
 Seppanen WASPAA 01

Self-similarity

Goto, Muraoka CASA98
Foote, Uchihashi ICME01
Scheirer JASA98
Tzanetakis et al AMTA01

Beat Histograms

Tzanetakis et al AMTA01

Beat Spectrum

Figure 4. Beat spectrogram of Pink Floyd's Money (excerpt), showing transition from 4/4 to $7 / 4$ time

Rhythmic content features

> Main tempo
> Secondary tempo
> Time signature
> Beat strength
> Regularity

Multiple Pitch Detection

Tolonen and Karjalainen, TSAP 00
Tzanetakis et al, ISMIR 01

C G

Chroma - Pitch perception

MIDI

> Musical Instrument Digital Interfaces
> Hardware interface
> File Format
> Note events
> Duration, discrete pitch, "instrument"
> Extensions
> General MIDI
> Notation, OMR, continuous pitch

Structured Audio

MPEG-4 SA Eric Scheirer

Instead of samples store sound as a computer program that generates audio samples

SASL	SAOL	```instr tone () { asig x, y, init;```
$\begin{aligned} & 0.25 \text { tone } 4.0 \\ & 4.50 \text { end } \end{aligned}$	5	$\begin{aligned} & \text { if (init }=0) \\ & \quad\{\text { init=1; } \\ & \quad x=0 ;\} \\ & x=x-0.196307 * y ; \\ & y=y+0.196307 * x ; \\ & \text { output }(y) ; \\ & \} \end{aligned}$

Query-by-Example Content-based Retrieval

Rank List Collection of 3000 clips

0
0
0
0
0

Automatic Musical Genre Classification

> Categorical music descriptions created by humans
> Fuzzy boundaries
> Statistical properties
> Timbral texture, rhythmic structure, harmonic content
> Automatic Musical Genre Classification
> Evaluate musical content features
> Structure audio collections

GenreGram DEMO

Dynamic real time 3D display for classification of radio signals

Structural Analysis

Dannenberg \& Hu, ISMIR 2002

Tzanetakis, Dannenberg \& Hu, WIAMIS 03
> Similarity matrix
> Representations
> Notes
> Chords
, Chroma
> Greedy hill-climbing algorithm
> Recognize repeated patterns
> Result = AABA (explanation)

An example - Naima (demo?)

POLYPHONIC AUDIO AND MIDI ALIGNMENT Music Representations

Symbolic Representation

- easy to manipulate
- "flat" performance

Audio Representation

- expressive performance
- opaque \& unstructured

POLYPHONIC AUDIO AND MIDI ALJGNMENT Similarity Matrix

Similarity Matrix for Beethoven's $5^{\text {th }}$ Symphony, first movement

Audio Fingerprinting and Watermarking

> Watermarking

- Copyright protection
> Proof of ownership
> Usage policies
> Metadata hiding
> Fingerprinting
* Tracking
- Copyright protection
» Metadata linking

Watermarking

> Steganography (hiding information in messages - invisible ink)

$$
73
$$

Desired Properties

> Perceptually hidden (inaudible)
> Statistically invisible
> Robust against signal processing
> Tamper resistant
> Spread in the music, not in header
> key dependent

Representations for Watermarking

> Basic Principles

- Psychoacoustics
- Spread Spectrum
> redundant spread of information in TF plane
> Representations
> Linear PCM
> Compressed bitstreams
> Phase, stereo
> Parametric representations

Watermarking on parametric representations

Problems with watermarking

> The security of the entire system depends on devices available to attackers
> Breaks Kerckhoff's Criterion: A security system must work even if reverse-engineered
> Mismatch attacks
> Time stretch audio - stretch it back (invertible)
> Oracle attacks
> Poll watermark detector

Audio Fingerprinting

> Each song is represent as a fingerprint (small robust representation)
> Search database based on fingerprint
> Main challenges
> highly robust fingerprint extraction
> efficient fingerprint search strategy
> Information is summarized from the whole song - attacks degrade unlike watermarking

Hash functions

> $\mathrm{H}(\mathrm{X})$-> maps large X to small hash value
> compare by comparing hash value
> Perceptual hash function?
> impossible to get exact matching
> Perceptually similar objects result in similar fingerprints
> Detection/false alarm tradeoff

Properties

> Robustness
> Reliability
> Fingerprint size
> Granularity

- Search speed and scalability

Fraunhofer

Allamanche Ismir 2001
> LLD Mpeg-7 framework (SFM)
> Vector quantization (k-means)
> Codebook of representative vectors
> Database target signature is the codebook
> Query -> sequence of feature vectors
> Matching by finding "best" codebook
> Robust not very scalable ($\mathrm{O}(\mathrm{n})$ search $)$)

Philips Research

Haitsa \& Kalker Ismir 2002
> 32-bit subfingerprints for every 11.6 msec
» overlapping frames of 0.37 seconds (31/32 overlap)
> PSD -> logarithmic band spacing (bark)
> bits 0-1 sign of energy
> looks like a fingerprint
> assume one fingerprint perfect hierarchical database layout (works ok)

Shazam Entertainment

> Pick landmarks on audio - calculate fingerprint
> histogram of relative time differences for filtering
> Spectrogram peaks (time, frequency)

Spectrogram Peaks

Very robust - even over noisy cell phones

Audio Fingerprinting

moodlogic.net

85

Auditory Scene Analysis

> Music and Sound Cognition
> Onset detection
> Toward Transcription

Auditory Scene Analysis

Bregman
> Auditory stream
> perceptual grouping of parts of the neural spectrogram that go together
> Sound is a mixture and is transparent
> Primitive process of streaming
> Schemas for particular classes of sounds
> Grouping
» across time (sequential)
» across freq (simultaneous)

Onset detection

Naive: peaks in power Multiband
(wavelet, filterbanks)
Synchronicity
Temporal Continuity
Common Fate Proximity

Polyphonic Transcription

TAIVAS ON SININEN JA VALKOINEN

Original

Transcribed

Summary

» Applications and especially analysis have different requirements -> different features

- wide variety of proposed audio features
» still many to be found hopefully by you :-)

Future Challenges

> Main challenges
> escape HMM and MFCC

- tackle the general problem of auditory scene analysis
> "real learning"
> active audition - search for evidence rather than try to find

Implementation

Tzanetakis \& Cook Organized Sound 4(3) 00

> MARSYAS: free software framework for computer audition research
> marsyas.sourceforge.net
> Server in C++ (numerical signal processing and machine learning)
> Client in JAVA (GUI)
> Linux, Solaris, Irix and Wintel (VS , Cygwin)

Marsyas users

Desert Island
Jared Hoberock Dan Kelly Ben Tietgen

Music-driven motion editing
Marc Cardle
Real time music-speech AKL MUSIC discrimination

Auditory Scene Analysis

Albert Bregman

THE END

> Perry Cook, Robert Gjerdingen, Ken Steiglitz
> Malcolm Slaney, Julius Smith, Richard Duda
> Georg Essl, John Forsyth
> Andreye Ermolinskiy, Doug Turnbull, George Tourtellot, Corrie Elder
> ISMIR, WASPAA, ICMC, DAFX, ICASSP , ICME

