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        Bits of the history of bits 

01011110101010  Hello world 

Understanding multimedia content -> 

Web Multimedia
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Tutorial Goals

�  Overview of state of the art 

�  Fundamentals 

�  Technical Background 

�  Some math, computer science, music 

�  Shift emphasis from audio 
coding/compression to audio analysis 

�  There is more to audio analysis than MFCCs
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Some simple but 
important observations

� Analysis/Understanding require multiple 
representations – no “best” one 

� Coding/Compression/Processing typically 
search for the “best” “optimal” way to do 
things 

� Paradigm shift is necessary to make 
multimedia more than just lots of numbers

� !!! MACHINE LEARNING 
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My background – MIR 

� Database of all recorded music 

� Tasks: organize, search, retrieve, classify 
recommend, browse, listen, annotate

� Examples: 
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Feature extraction

Feature
Space

Feature vector
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Outline

� Introduction    10 min

� Signal Processing       30 min

� Source-based               20 min

� Perception-based       30 min 

� Music-specific             20 min        

� Fingerprinting and watermarking    25 min   

� Sound Separation and CASA              25 min

� Future work and challenges   20 min 
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Signal Processing

� Sound and Sine Waves 

� Short Time Fourier Transform 

� Discrete Wavelet Transform 

� Fundamental Frequency Detection
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Understanding Sound

� Longitudinal wave – pulsating expanding 
sphere 

� 344 m (1128 feet) / second (at 20 Celcius) 

� Reflections 

� Sound production, propagation and 
perception are to a certain degree linear 
phenomena 
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Time-domain 
waveform

Input

Time

?

Decompose to building blocks
that are created in a regular fashion

Frequency

Time
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Spectrum
M

F
M

F

 t

 t+1

Recipe for how to combine 
the building blocks to form 
the signal 

Different view of the same 
information
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Linear Systems
and Sine Waves

in1

in2

in1 + in2

out1

out2

out1 + out2

Amplitude

Period = 1 / Frequency

0 180 360

Phase True sine waves last forever  

sine wave -> LTI -> new sine wave
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     Time-Frequency Analysis 
Fourier Transform
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Any periodic waveform can be approximated 
by a number of sinusoidal components that 
are harmonics (integer multiples) 
of a fundamental frequency
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Non-periodic signals

P=1/f=2

� � !

We force them to 
be periodic by 
repeating them to 
infinity 
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Short Time
Fourier Transform 

Time-varying spectra
Fast Fourier Transform FFT 

Input

Time

 t

  t+1

  t+2

Filters Oscillators

Output

Amplitude

Frequency

Vocoder
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Short Time 
Fourier Transform II

FT = global representation of frequency content 

"
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Heisenberg uncertainty

Time – Frequency
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STFT- Wavelets
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A filterbank view
of STFT and DWT

BW = 1KHz
CF   = 500Hz

BW = 1KHz
CF   = 1500Hz

BW = 1KHz
CF   = 2500Hz

Impulse
input

Impulse
input

BW=200

BW=400

BW=800

STFT DWT



19

The Discrete Wavelet 
Transform

Analysis

Synthesis

Octave filterbank
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Sinusoids + noise 
modeling

Oscillators

Amplitude

Frequency

FilterNoise

output
Deterministic 
Part

Stochastic
Part
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Spectral Shape Features
M

F
M

F

 t

 t+1

Centroid = center of gravity of spectrum
Rolloff   = energy distribution low/high
Flux       = short time change 

Grey's timbrespace (1975)
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Spectral  Flatness

¼ octave

¼ octave

¼ octave

Logarithmically-spaced 
overlapping frequency bands

ratio of geometric mean to arithmetic mean of 
spectral power (presence of tonal component in band)

Tonality coefficients = how 
much tone vs noise is that 
particular band 
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Analysis and Texture 
Windows

Texture windows

Speech Orchestra

20 milliseconds
40 analysis windows

Piano

Analysis windows

Running multidimensional Gaussian distribution
(means, variances over texture window)
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Fundamental 
Frequency  Detection 

P

r x
5

n 6 0

N 7 1
x n x n 8 l , l 9 0,1,.. L : 1

Autocorrelation  
Peaks at multiple of 
the fundamental frequency

ZeroCrossings

Time-domain
Frequency-domain
Perceptual

Rhythm -> ~20 Hz Pitch
(created by Roger Dannenberg)
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Demos I 

; Phase vocoder 

< Spectrograms – time frequency tradeoffs 

= Wavelet decomposition 
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Source-based 
approaches

> Linear Prediction 

? CELP, GSM 

@ Isolated tone musical instrument 
recognition
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Harmonic Partials

A Instruments and the voice are harmonic 
oscillators (solution to pdf) 

B Partials (peaks in the spectrum) 

C Harmonic Partials are integer multiples of 
the first partial or fundamental frequency 

frequencyf
0

3f
0

Helmholz – timbre is based
on the relative weights of 
the harmonics 
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Voice production

D Vocal Folds 

E breath pressure from lungs causes   
 the folds to oscillate 

F oscillator driven by breath pressure                  
acts as excitation to the vocal folds

G Vocal Tract 

H tube(s) of varying cross-section exhibiting 
modes of vibration (resonances) 

I resonances “shape” the excitation
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Formant Peaks - 
Resonances

Modes/resonances are the result of standing waves 
constructive interference – boosted regions of frequency

Vocal tract is essentially a tube
that is closed at the vocal fold 
and open at the lips

modes = odd-multiples of ¼ cycle
of a sine wave  (F1 = c/l/4) l=9in
375 Hz, 1125 Hz, 2075 Hz
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Formants

From “Real Sound Synthesis for Interactive Applications”
P. Cook, A.K Peters Press, used by permission
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Linear Prediction 
Coefficients

Lossless Tube SpeechImpulses @ f0

White Noise

Source Filter

s ' n

J K

i L 1
p

a i s n M 1 H z N 1

1 O P
i Q 1

p

a i z

R i
Original

Resynthesized
with impulses/noise
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Variations

S Perceptual Linear Prediction

T RASTA – Relative Spectral Transform 
-Perceptual Linear Prediction

U Take advantage of HAS characteristics

V CELP (Code Excited Linear Prediction)

W better modeling of excitation

X GSM 
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CELP

Y Problems with LPC

Z tube is not one tube but two (nose) 

[ buzz is not buzz

\ everything goes into residue 

] Codebook Excitation

^ table of typical residue signals

_ one fixed

` one adaptive 
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Isolated Tone
Instrument Classification

a Important step for music transcription

b Hierarchical classification

c Family: bowed, wind etc

d Instrument: violin, flute, piano etc

e Spectral 

f Temporal 

g temporal centroid, onset time
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MPEG-7
Audio Descriptors

h Low-Level Audio Descriptors

i Waveform, Spectral

j Spectral Timbral (centroid, spread)

k Temporal Timbral (temporal cntrd, log-attack) 

l High-Level Description Tools

m Sound recognition and indexing

n Spoken content

o Musical instrument timbre 

p Melody description
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Principal Component 
Analysis

Projection 
matrix

PCA
Eigenanalysis
of collection 
correlation matrix
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MPEG-7 Spectral Basis
Functions

SVD

collection of 
spectra

Basis Functions (eigenvectors)

Projection coefficients
(eigenvalues)

typical: 70% of original 32-dimensional data is captured by 4 sets of basis
functions and projection coefficients 

Each spectrum can be expressed as a linear combination of the basis
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Perception-based 
approaches

q Pitch perception

r Loudness percetion

s Critical Bands

t Mel-Frequency Cepstral Coefficients 

u Masking

v Perceptual Audio Compression (MPEG) 
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The Human Ear

Pinna
Auditory canal
Ear Drum 
Stapes-Malleus-Incus (gain control)
Cochlea (freq. analysis)
Auditory Nerve    ?

Wave travels to cutoff slowing 
down increasing in amplitude
power is absorbed 

Each frequency has a position 
of maximum displacement 
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Masking

Two frequencies -> beats
                            -> harsh
                            -> seperate

Inner Hair Cell excitation

Frequency Masking 
Temporal Masking 

Pairs of sine waves (one softer) – how much weaker in order to be masked ?
(masking curves)   wave of high frequency can not mask a wave of lower 
frequency 
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Masking Demo

From “Music, Cognition and Computerized Sound”
P. Cook (Editor) MIT Press 

High sine waves mask low: 500 Hz tone at 0dB with lower
tones at -40dB, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480 Hz

Low sine waves mask hih: 500Hz tone at 0dB with higher tones 
at -40dB, 1700, 1580, 1460, 1340, 1220, 1100, 980, 860, 740, 620 Hz
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Critical Bands

w Critical bandwidth = two sinusoidal signals 
interact or mask one another 

x Bark scale  (24 critical bands) 

y [0, 100, 200, 300, 400, 510, 630, 770, 920, 1080, 
1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700] 

z samplings of a continuous variation in the 
frequency response of the ear to a sinusoid or 
narrow band process 

{ there is no discrete filterbank in the ear 
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Fletcher-Munson 
Curves

Loudness is a 
perceptual (not physical)
quantity i.e two sound 
with same SPL different
frequencies are perceived
to have different loudness

(used in PLP) 

for a soft sound at 50Hz
to sound as loud as one 
at 2000 Hz 
50dB more intense
(100,000 times more power)
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Pitch Perception I 

| Pitch is not just fundamental frequency

} Periodicity or harmonicity or both ?  

~ Human judgements (adjust sine method) 

� 1924 Fletcher – harmonic partials missing 
fundamental (pitch is still heard) 

� Examples: phone, small radio

� Terhardt (1972), Licklider (1959) 

� duplex theory of pitch (virtual & spectral pitch) 
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Pitch Perception II 

� One perception – two overlapping 
mechanisms

� Counting cycles of period  < 800Hz

� Place of excitation along basilar membrane > 
1600 Hz 

FFT Pick sinusoids weighting / masking
candidate 
generation

common divisorsmost likely pitch
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Mel Frequency Cepstral 
Coefficients

Mel-scale
13 linearly-spaced filters 
27 log-spaced filters 

CFCF-130
CF / 1.0718

CF+130
CF * 1.0718 

Mel-filtering

Log

DCT

MFCCs
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Cepstrum

Measure of periodicity of frequency response plot

S(ej

�

) = H(ej

�

) E (e j

�

)                                      H is linear filter, E is excitation

log(|S(ej

�

)|) = log (|H(ej

�

)|) + log(|E (e j

�

)|) 

(homomorphic transformation – the convolution of two signals becomes
equivalent to the sum of their cepstra)

Aims to deconvolve the signal (low order coefficients filter shape – high
order coefficients excitation with possible F0) 
Cepstral coefficients can also be derived from LPC analysis 
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Discrete Cosine Transform

� Strong energy compaction

� For certain types of signals approximates KL 
transform (optimal) 

� Low coefficients represent most of the signal

� Can throw high coefficients 

� MFCCs keep first 13-20 

� MDCT (overlap-based) used in MP3, AAC, 
Vorbis audio compression
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   Short MPEG Audio 
Coding Overview (mp3)

Signal Analysis
Filterbank

Psychoacoustics 
Model

32-linearly
spaced bands

 available bits 

MPEG Perceptual Audio Coding

Encoder: slow, complicated
Decoder: fast, simple 
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Psychoacoustic Model

� Each band is quantized 

� Quantization introduces noise 

� Adapt the quantization so that it is inaudible

� Take advantage of masking 

� Hide quantization noise where it is masked

� MPEG standarizes how the quantized bits 
are transmitted not the psychoacoustic 
model – (only recommended) 
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MP3 Feature Extraction

� Feature extraction while decoding MPEG 
audio compressed data (mp3 files) 

� Free analysis for encoding 

� Space and time savings

Encoder
Analysis for 
compression

Analysis for feature
extraction

Decoder

Feature extractionFeature extraction

Pye                              ICASSP 00 
Tzanetakis & Cook     ICASSP 00
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Music-specific
Audio Features

� Beat extraction and rhythm representation

� Multi-pitch analysis and transcription

� Chroma 

� MPEG-4 Structured Audio

� Similarity Retrieval 

  Genre Classification 

¡ Score following 
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Importance of Music 

¢  4 m CD tracks

£  4000 CDs / month 

¤  60-80% ISP bandwidth

¥ Napster- 1.57m sim.users (00) 

¦ 61.3m downloaded music (01) 

§ Kazaa – 230 m downloads  (03)

¨  Global, Pervasive, Complex 
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Traditional Music 
Representations 
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Rhythm 

© Rhythm = movement in time

ª Origins in poetry (iamb, trochaic...)

« Foot tapping definition

¬ Hierarchical semi-periodic structure at 
multiple levels of detail 

 Links to motion, other sounds

® Running vs global  
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Event-based 
Alghoniemy, Tewfik   WMSP99
Dixon                           ICMC02
Goto, Muraoka             IJCA97          
Gouyon et al                DAFX 00
Laroche                        WASPAA 01
Seppanen                     WASPAA 01

Event onset detection IOI computation Beat model

Single band
Multiple band 
Thresholding
Chord changes

Successive onset pairs
All onset pairs
Quantization

Constant-tempo
Measure changes
Computational cost
Multiple hyphotheses
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Self-similarity Goto, Muraoka    CASA98
Foote, Uchihashi ICME01
Scheirer               JASA98
Tzanetakis et al   AMTA01

Input
Signal

  
  Full Wave Rectification - Low Pass Filtering - Normalization

+

 

Peak Picking

Beat Histogram

Envelope Extraction

D
W
T

Autocorrelation
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Beat Histograms
Tzanetakis et al     AMTA01

 max(h(i)), argmax(h(i))
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Beat Spectrum
Foote, Uchihashi 01
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Rhythmic content 
features

¯ Main tempo 

° Secondary tempo 

± Time signature 

² Beat strength

³ Regularity 
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Multiple Pitch
 Detection 

> 1kHz

< 1kHz

Half-wave Rectifier
LowPass

Periodicity
Detection

Periodicity
Detection

SACF 
Enhancer

Pitch Candidates

C GC G

(7 * c ) mod 12

Circle of 5s

Tzanetakis et al, ISMIR 01Tolonen and Karjalainen, TSAP 00
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Chroma – Pitch 
perception
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MIDI  

´ Musical Instrument Digital Interfaces

µ Hardware interface

¶ File Format 

· Note events

¸ Duration, discrete pitch, "instrument"

¹ Extensions

º General MIDI

» Notation, OMR, continuous pitch
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Structured Audio 

MPEG-4 SA 
Eric Scheirer

Instead of samples store sound as a computer
program that generates audio samples 

0.25 tone 4.0
4.50 end

SASL

 instr tone ()
{ 
    asig x, y, init;
    if (init = 0)
    {  init=1;
        x=0;}
x=x - 0.196307* y;
y=y + 0.196307* x;
output(y);
}

SAOL
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Query-by-Example 
Content-based Retrieval 

Rank List Collection of 3000 clips
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Automatic Musical 
Genre Classification

¼ Categorical music descriptions created by 
humans 

½ Fuzzy boundaries

¾ Statistical properties

¿ Timbral texture, rhythmic structure, harmonic 
content 

À Automatic Musical Genre Classification

Á Evaluate musical content features

Â Structure audio collections  
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GenreGram DEMO

Dynamic real time 3D display 
for classification of radio signals 
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Structural Analysis

Ã Similarity matrix

Ä Representations

Å Notes

Æ Chords

Ç Chroma 

È Greedy hill-climbing algorithm 

É Recognize repeated patterns

Ê Result = AABA (explanation) 

Dannenberg & Hu, ISMIR 2002
Tzanetakis, Dannenberg & Hu, WIAMIS 03
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An example – Naima
(demo ?)
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Music Representations

Ë Symbolic 
Representation
– easy to manipulate
– “flat” performance

Ì Audio Representation
– expressive performance
– opaque & unstructured

    Align

POLYPHONIC AUDIO AND MIDI
ALIGNMENT
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Similarity Matrix

Similarity Matrix for Beethoven’s 5th Symphony, first movement 

Optimal 
Alignment 

Path

Oboe solo:
•Acoustic Recording
•Audio from MIDI

(Duration: 6:17)

(D
ur

at
io

n:
 7

:4
9)

POLYPHONIC AUDIO AND MIDI
ALIGNMENT
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Audio Fingerprinting 
and Watermarking

Í Watermarking

Î Copyright protection 

Ï Proof of ownership

Ð Usage policies 

Ñ Metadata hiding

Ò Fingerprinting

Ó Tracking

Ô Copyright protection

Õ Metadata linking
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Watermarking

Ö Steganography (hiding information in 
messages – invisible ink ) 

Watermark
Embedder

watermark data

key

signal
repres.

transmission
   attacks

Watermark
Extractor

key

watermark 
data

(original music)
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Desired Properties

× Perceptually hidden (inaudible) 

Ø Statistically invisible 

Ù Robust against signal processing 

Ú Tamper resistant 

Û Spread in the music, not in header 

Ü key dependent 
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Representations
for Watermarking

Ý Basic Principles 

Þ Psychoacoustics 

ß Spread Spectrum 

à redundant spread of information in TF plane 

á Representations 

â Linear PCM 

ã Compressed bitstreams 

ä Phase, stereo

å Parametric representations
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Watermarking
on parametric representations

Yi-Wen Liu
J. Smith 2004

message

parameters p 

QIM
p' Audio 

Synthesis
Attack

Parameter
Estimation

Min distance
decoding

W

W' p''
Choose attack tolerance 
quantize so perceptual 
distortion < t and lattice 
finding possible
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Problems with 
watermarking

æ The security of the entire system depends 
on devices available to attackers 

ç Breaks Kerckhoff's Criterion: A security system 
must work even if reverse-engineered 

è Mismatch attacks 

é Time stretch audio – stretch it back (invertible)

ê Oracle attacks

ë Poll watermark detector 
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Audio Fingerprinting

ì Each song is represent as a fingerprint 
(small robust representation)

í Search database based on fingerprint

î Main challenges

ï highly robust fingerprint extraction

ð efficient fingerprint search strategy 

ñ Information is summarized from the whole 
song – attacks degrade unlike watermarking
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Hash functions

ò H(X) -> maps large X to small hash value 

ó compare by comparing hash value 

ô Perceptual hash function ? 

õ impossible to get exact matching

ö Perceptually similar objects result in similar 
fingerprints

÷ Detection/false alarm tradeoff 
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Properties

ø Robustness

ù Reliability

ú Fingerprint size

û Granularity 

ü Search speed and scalability 
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Fraunhofer 

ý LLD Mpeg-7 framework (SFM) 

þ Vector quantization (k-means) 

ÿ Codebook of representative vectors

� Database target signature is the codebook 

� Query -> sequence of feature vectors 

� Matching by finding “best” codebook 

� Robust not very scalable (O(n) search)) 

Allamanche Ismir
2001
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Philips Research

� 32-bit subfingerprints for every 11.6 msec

� overlapping frames of 0.37 seconds (31/32 
overlap) 

� PSD -> logarithmic band spacing  (bark) 

� bits 0-1 sign of energy 

� looks like a fingerprint 

	 assume one fingerprint perfect – 
hierarchical database layout (works ok) 

Haitsa & Kalker 
Ismir 2002
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Shazam Entertainment


 Pick landmarks on audio – calculate 
fingerprint

� histogram of relative time differences for 
filtering 

� Spectrogram peaks (time, frequency) 
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Spectrogram Peaks

Very robust – even over noisy cell phones
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Audio Fingerprinting

Music piece

Signature
Database

Signature 1.5 millionMatching

Robustness

300 bytes

1sec

20msec

Copyright, metadata

moodlogic.net
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Auditory Scene 
Analysis 

 Music and Sound Cognition 

� Onset detection 

� Toward Transcription 
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Auditory Scene Analysis

� Auditory stream

� perceptual grouping of parts of the neural 
spectrogram that go together 

� Sound is a mixture and is transparent

� Primitive process of streaming 

� Schemas for particular classes of sounds

� Grouping 

� across time (sequential) 

� across freq  (simultaneous) 

Bregman
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Onset detection

Naive: peaks in power
Multiband 
(wavelet, filterbanks) 

Synchronicity 
Temporal Continuity 
Common Fate 
Proximity 
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Polyphonic 
Transcription

Original Transcribed

Mixture signal Noise Suppression

Klapuri et al, DAFX 00

Predominant pitch 
estimation

Remove detected 
sound 

Estimate # voices
iterate
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Summary 

� Applications and especially analysis have 
different requirements -> different features

� wide variety of proposed audio features 

� still many to be found .... hopefully by you :-) 
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Future Challenges

� Main challenges

� escape HMM and MFCC 

� tackle the general problem of auditory scene 
analysis 

� “real learning” 

� active audition  - search for evidence rather 
than try to find 
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Implementation

 MARSYAS : free software framework for 
computer audition research

! marsyas.sourceforge.net

" Server in C++ (numerical signal processing and 
machine learning)         

#  Client in JAVA (GUI)  

$ Linux, Solaris, Irix and Wintel (VS , Cygwin)

 Tzanetakis & Cook Organized Sound 4(3) 00
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Marsyas users

Desert Island

Jared Hoberock
Dan Kelly
Ben Tietgen

Marc Cardle

Music-driven
motion editing

Real time
music-speech
discrimination



94

Auditory Scene Analysis

Albert Bregman
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THE END

% Perry Cook, Robert Gjerdingen, Ken Steiglitz

& Malcolm Slaney, Julius Smith, Richard Duda 

' Georg Essl, John Forsyth 

( Andreye Ermolinskiy, Doug Turnbull, George 
Tourtellot, Corrie Elder

) ISMIR, WASPAA, ICMC, DAFX, ICASSP , ICME 


