

ICME 2004 Tutorial: Audio Feature Extraction

George Tzanetakis Assistant Professor Computer Science Department University of Victoria, Canada

> gtzan@cs.uvic.ca http://www.cs.uvic.ca/~gtzan

Bits of the history of bits

01011110101010

Hello world

Web

Multimedia

Understanding multimedia content ->

Tutorial Goals

- Overview of state of the art
- Fundamentals
- > Technical Background
 - Some math, computer science, music
- Shift emphasis from audio coding/compression to audio analysis
- > There is more to audio analysis than MFCCs

Some simple but important observations

- > Analysis/Understanding require multiple representations – no "best" one
- Coding/Compression/Processing typically search for the "best" "optimal" way to do things
- Paradigm shift is necessary to make multimedia more than just lots of numbers
- > !!! MACHINE LEARNING

My background – MIR

- > Database of all recorded music
- Tasks: organize, search, retrieve, classify recommend, browse, listen, annotate
- > Examples:

Feature extraction

Outline

- Introduction 10 min
- > Signal Processing 30 min
- Source-based20 min
- Perception-based 30 min
- Music-specific20 min
- > Fingerprinting and watermarking 25 min
- Sound Separation and CASA
 25 min
- Future work and challenges

20 min

Signal Processing

- Sound and Sine Waves
- Short Time Fourier Transform
- > Discrete Wavelet Transform
- Fundamental Frequency Detection

Understanding Sound

- Longitudinal wave pulsating expanding sphere
- > 344 m (1128 feet) / second (at 20 Celcius)
- Reflections
- Sound production, propagation and perception are to a certain degree linear phenomena

Spectrum

Recipe for how to combine the building blocks to form the signal

Different view of the same information

Linear Systems and Sine Waves

12

Time-Frequency Analysis Fourier Transform

$$\int f x = \sum_{n=0}^{\infty} a_n \cos n * x + \sum_{n=0}^{\infty} b_n \sin n * x$$

$$f t = \frac{1}{2\pi} \int_{-\infty}^{\infty} f \omega e^{-i\omega t} dt$$

$$f \ \omega = \int_{-\infty}^{\infty} f \ t \ \mathrm{e}^{i \, \omega \, t} \, dt$$

$$e^{i\theta} = \cos \theta + i * \sin \theta$$

Non-periodic signals

Short Time Fourier Transform

Short Time Fourier Transform II

FT = global representation of frequency content

Sf
$$u, \omega = \int_{-\infty}^{\infty} f t g t - u e^{-i\omega t} dt$$

Time – Frequency

L2 Heisenberg uncertainty

$$\sigma_t \sigma_\omega \ge 1/4$$

STFT- Wavelets

Time – Frequency Heisenberg uncertainty

$$\sigma_t \sigma_\omega \ge 1/4$$

A filterbank view of STFT and DWT

The Discrete Wavelet Transform

Octave filterbank

Sinusoids + noise modeling

Spectral Flatness

Logarithmically-spaced overlapping frequency bands much tone vs noise is that particular band

Analysis and Texture Windows

Running multidimensional Gaussian distribution (means, variances over texture window)

Fundamental Frequency Detection

Time-domain Frequency-domain Perceptual

Autocorrelation Peaks at multiple of the fundamental frequency

Ρ

ZeroCrossings

$$r_{x} = \sum_{n=0}^{N-1} x n x n+l$$
, $l = 0,1,..,L-1$

Rhythm -> ~20 Hz Pitch (created by Roger Dannenberg)

Demos I

- > Phase vocoder
- Spectrograms time frequency tradeoffs
- > Wavelet decomposition

Source-based approaches

- > Linear Prediction
- CELP, GSM
- > Isolated tone musical instrument recognition

Harmonic Partials

- Instruments and the voice are harmonic oscillators (solution to pdf)
- Partials (peaks in the spectrum)
- Harmonic Partials are integer multiples of the first partial or fundamental frequency

Helmholz – timbre is based on the relative weights of the harmonics

Voice production

- Vocal Folds
 - > breath pressure from lungs causes the folds to oscillate
 - > oscillator driven by breath pressure acts as excitation to the vocal folds
- h pressure

- Vocal Tract
 - > tube(s) of varying cross-section exhibiting modes of vibration (resonances)
 - resonances "shape" the excitation

Formant Peaks -Resonances

Modes/resonances are the result of standing waves constructive interference – boosted regions of frequency

Vocal tract is essentially a tube that is closed at the vocal fold and open at the lips

modes = odd-multiples of $\frac{1}{4}$ cycle of a sine wave (F1 = c/l/4) l=9in 375 Hz, 1125 Hz, 2075 Hz

Formants

From "Real Sound Synthesis for Interactive Applications" P. Cook, A.K Peters Press, used by permission

Linear Prediction Coefficients

Variations

- > Perceptual Linear Prediction
- RASTA Relative Spectral Transform
 Perceptual Linear Prediction
 - > Take advantage of HAS characteristics
- > CELP (Code Excited Linear Prediction)
 - > better modeling of excitation
- > GSM

CELP

- > Problems with LPC
 - > tube is not one tube but two (nose)
 - buzz is not buzz
 - > everything goes into residue
- Codebook Excitation
 - > table of typical residue signals
 - > one fixed
 - > one adaptive

Isolated Tone Instrument Classification

- > Important step for music transcription
- > Hierarchical classification
 - Family: bowed, wind etc
 - > Instrument: violin, flute, piano etc
- Spectral
- > Temporal
 - > temporal centroid, onset time

MPEG-7 Audio Descriptors

- > Low-Level Audio Descriptors
 - > Waveform, Spectral
 - Spectral Timbral (centroid, spread)
 - > Temporal Timbral (temporal cntrd, log-attack)
- > High-Level Description Tools
 - Sound recognition and indexing
 - Spoken content
 - > Musical instrument timbre
 - > Melody description

Principal Component Analysis

IÇME

TA

MPEG-7 Spectral Basis Functions

typical: 70% of original 32-dimensional data is captured by 4 sets of basis functions and projection coefficients

Each spectrum can be expressed as a linear combination of the basis

Perception-based approaches

- > Pitch perception
- > Loudness percetion
- Critical Bands
- > Mel-Frequency Cepstral Coefficients
- Masking
- Perceptual Audio Compression (MPEG)

The Human Ear

Pinna Auditory canal Ear Drum Stapes-Malleus-Incus (gain control) Cochlea (freq. analysis) Auditory Nerve ?

Wave travels to cutoff slowing down increasing in amplitude power is absorbed

Each frequency has a position of maximum displacement

Masking

Two frequencies -> beats -> harsh -> seperate

Inner Hair Cell excitation

Frequency Masking Temporal Masking

Pairs of sine waves (one softer) – how much weaker in order to be masked ? (masking curves) wave of high frequency can not mask a wave of lower frequency

Masking Demo

High sine waves mask low: 500 Hz tone at 0dB with lower tones at -40dB, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480 Hz

Low sine waves mask hih: 500Hz tone at 0dB with higher tones at -40dB, 1700, 1580, 1460, 1340, 1220, 1100, 980, 860, 740, 620 Hz

Critical Bands

- Critical bandwidth = two sinusoidal signals interact or mask one another
- Bark scale (24 critical bands)
 - [0, 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700]
 - samplings of a continuous variation in the frequency response of the ear to a sinusoid or narrow band process
 - there is no discrete filterbank in the ear

Fletcher-Munson Curves

Loudness is a perceptual (not physical) quantity i.e two sound with same SPL different frequencies are perceived to have different loudness

4

(used in PLP)

for a soft sound at 50Hz to sound as loud as one at 2000 Hz 50dB more intense (100,000 times more power)

Pitch Perception I

- > Pitch is not just fundamental frequency
- Periodicity or harmonicity or both ?
- > Human judgements (adjust sine method)
- > 1924 Fletcher harmonic partials missing fundamental (pitch is still heard)
 - > Examples: phone, small radio
- Ferhardt (1972), Licklider (1959)
 - > duplex theory of pitch (virtual & spectral pitch)

Pitch Perception II

- One perception two overlapping mechanisms
 - Counting cycles of period < 800Hz</p>
 - Place of excitation along basilar membrane > 1600 Hz

Mel Frequency Cepstral Coefficients

Cepstrum

Measure of periodicity of frequency response plot

 $S(e^{j\theta}) = H(e^{j\theta}) E(e^{j\theta})$ H is linear filter, E is excitation

 $\log(|\mathbf{S}(\mathbf{e}^{\mathrm{j}\theta})|) = \log(|\mathbf{H}(\mathbf{e}^{\mathrm{j}\theta})|) + \log(|\mathbf{E}(\mathbf{e}^{\mathrm{j}\theta})|)$

(homomorphic transformation – the convolution of two signals becomes equivalent to the sum of their cepstra)

Aims to deconvolve the signal (low order coefficients filter shape – high order coefficients excitation with possible F0) Cepstral coefficients can also be derived from LPC analysis

Discrete Cosine Transform

- Strong energy compaction
- For certain types of signals approximates KL transform (optimal)
- > Low coefficients represent most of the signal
- Can throw high coefficients
- » MFCCs keep first 13-20
- MDCT (overlap-based) used in MP3, AAC, Vorbis audio compression

Short MPEG Audio Coding Overview (mp3)

Decoder: fast, simple

available bits

Psychoacoustic Model

- > Each band is quantized
- > Quantization introduces noise
- > Adapt the quantization so that it is inaudible
- > Take advantage of masking
 - > Hide quantization noise where it is masked
- MPEG standarizes how the quantized bits are transmitted not the psychoacoustic model – (only recommended)

MP3 Feature Extraction

PyeICASSP 00Tzanetakis & CookICASSP 00

- Feature extraction while decoding MPEG audio compressed data (mp3 files)
- > Free analysis for encoding
- > Space and time savings

Music-specific Audio Features

- > Beat extraction and rhythm representation
- > Multi-pitch analysis and transcription
- Chroma
- » MPEG-4 Structured Audio
- Similarity Retrieval
- Genre Classification
- Score following

Importance of Music

- > 4 m CD tracks
- > 4000 CDs / month
- > 60-80% ISP bandwidth
- Napster- 1.57m sim.users (00)
- > 61.3m downloaded music (01)
- Kazaa 230 m downloads (03)
- Global, Pervasive, Complex

Traditional Music Representations

Rhythm

- Rhythm = movement in time
- > Origins in poetry (iamb, trochaic...)
- Foot tapping definition
- Hierarchical semi-periodic structure at multiple levels of detail
- Links to motion, other sounds
- Running vs global

Self-similarity

Goto, MuraokaCASA98Foote, UchihashiICME01ScheirerJASA98Tzanetakis et alAMTA01

Beat Histograms

Tzanetakis et al AMTA01

 $max(h(i)), argmax(h(i)) \longrightarrow O$

Beat Spectrum

Foote, Uchihashi 01

sa la constante da la constant

Figure 4. Beat spectrogram of Pink Floyd's *Money* (excerpt), showing transition from 4/4 to 7/4 time

Main tempo

Î

- Secondary tempo
- > Time signature
- > Beat strength
- > Regularity

Multiple Pitch Detection

Chroma – Pitch perception

MIDI

- > Musical Instrument Digital Interfaces
 - > Hardware interface
 - File Format
- Note events
 - > Duration, discrete pitch, "instrument"
- > Extensions
 - General MIDI
 - Notation, OMR, continuous pitch

Structured Audio

MPEG-4 SA Eric Scheirer Instead of samples store sound as a computer program that generates audio samples

SASL

0.25 tone 4.0 4.50 end

SAOL instr tone ()
{
 asig x, y, init;
 if (init = 0)
 { init=1;
 x=0;}
 x=x - 0.196307* y;
 y=y + 0.196307* x;
 output(y);
 }

Query-by-Example Content-based Retrieval

Automatic Musical Genre Classification

- Categorical music descriptions created by humans
 - Fuzzy boundaries
- > Statistical properties
 - Timbral texture, rhythmic structure, harmonic content
- > Automatic Musical Genre Classification
 - > Evaluate musical content features
 - Structure audio collections

GenreGram DEMO

Dynamic <u>real time</u> 3D display for classification of radio signals

Structural Analysis

Dannenberg & Hu, ISMIR 2002 Tzanetakis, Dannenberg & Hu, WIAMIS 03

- Similarity matrix
- > Representations
 - Notes
 - Chords
 - Chroma

- > Greedy hill-climbing algorithm
 - > Recognize repeated patterns
- Result = AABA (explanation)

An example – Naima (demo ?)

Î

POLYPHONIC AUDIO AND MIDI ALIGNMENT Music Representations

- Symbolic Representation
 - easy to manipulate
- Align "flat" performance
 - Audio Representation– expressive performance– opaque & unstructured
- on nce ed

POLYPHONIC AUDIO AND MIDI ALIGNMENT Similarity Matrix

GOM=

Similarity Matrix for Beethoven's 5th Symphony, first movement

71

Audio Fingerprinting and Watermarking

- > Watermarking
 - Copyright protection
 - > Proof of ownership
 - > Usage policies
 - > Metadata hiding
- > Fingerprinting
 - > Tracking
 - > Copyright protection
 - » Metadata linking

Watermarking

 Steganography (hiding information in messages – invisible ink)

Desired Properties

- Perceptually hidden (inaudible)
- Statistically invisible
- > Robust against signal processing
- > Tamper resistant
- Spread in the music, not in header
- > key dependent

Representations for Watermarking

- Basic Principles
 - > Psychoacoustics
 - > Spread Spectrum
 - redundant spread of information in TF plane
- > Representations
 - Linear PCM
 - Compressed bitstreams
 - > Phase, stereo
 - > Parametric representations

Watermarking on parametric representations Yi-Wen Liu J. Smith 2004

Problems with watermarking

- The security of the entire system depends on devices available to attackers
 - Breaks Kerckhoff's Criterion: A security system must work even if reverse-engineered
- > Mismatch attacks
 - > Time stretch audio stretch it back (invertible)
- Oracle attacks
 - Poll watermark detector

Audio Fingerprinting

- Each song is represent as a fingerprint (small robust representation)
- Search database based on fingerprint
- > Main challenges
 - > highly robust fingerprint extraction
 - > efficient fingerprint search strategy
- Information is summarized from the whole song – attacks degrade unlike watermarking

Hash functions

- H(X) -> maps large X to small hash value
- > compare by comparing hash value
- Perceptual hash function ?
 - > impossible to get exact matching
- Perceptually similar objects result in similar fingerprints
- > Detection/false alarm tradeoff

Properties

- > Robustness
- > Reliability
- > Fingerprint size
- > Granularity
- Search speed and scalability

Fraunhofer

Allamanche Ismir 2001

- > LLD Mpeg-7 framework (SFM)
- > Vector quantization (k-means)
 - Codebook of representative vectors
- > Database target signature is the codebook
- > Query -> sequence of feature vectors
- Matching by finding "best" codebook
- > Robust not very scalable (O(n) search))

Philips Research

Haitsa & Kalker Ismir 2002

- > 32-bit subfingerprints for every 11.6 msec
- overlapping frames of 0.37 seconds (31/32 overlap)
- > PSD -> logarithmic band spacing (bark)
- > bits 0-1 sign of energy
- > looks like a fingerprint
- > assume one fingerprint perfect hierarchical database layout (works ok)

Shazam Entertainment

- Pick landmarks on audio calculate fingerprint
- histogram of relative time differences for filtering
- Spectrogram peaks (time, frequency)

Very robust – even over noisy cell phones

I Godd

Audio Fingerprinting

moodlogic.net

Auditory Scene Analysis

- > Music and Sound Cognition
- > Onset detection
- > Toward Transcription

Auditory Scene Analysis

Bregman

- > Auditory stream
 - > perceptual grouping of parts of the neural spectrogram that go together
- Sound is a mixture and is transparent
 - > Primitive process of streaming
 - Schemas for particular classes of sounds
- Grouping
 - > across time (sequential)
 - > across freq (simultaneous)

Onset detection

Naive: peaks in power Multiband (wavelet, filterbanks)

Synchronicity Temporal Continuity Common Fate Proximity

Polyphonic Transcription

Klapuri et al, DAFX 00

TAIVAS ON SININEN JA VALKOINEN

Summary

- Applications and especially analysis have different requirements -> different features
- > wide variety of proposed audio features
- still many to be found hopefully by you :-)

Future Challenges

- > Main challenges
 - > escape HMM and MFCC
 - > tackle the general problem of auditory scene analysis
 - "real learning"
 - active audition search for evidence rather than try to find

Implementation

Tzanetakis & Cook Organized Sound 4(3) 00

- MARSYAS: free software framework for computer audition research
 - > marsyas.sourceforge.net
 - Server in C++ (numerical signal processing and machine learning)
 - Client in JAVA (GUI)
 - Linux, Solaris, Irix and Wintel (VS, Cygwin)

Marsyas users

Desert Island

Jared Hoberock Dan Kelly Ben Tietgen

Music-driven motion editing Marc Cardle

Real time music-speech discrimination

93

IGME

Albert Bregman

THE END

- Perry Cook, Robert Gjerdingen, Ken Steiglitz
- Malcolm Slaney, Julius Smith, Richard Duda
- > Georg Essl, John Forsyth
- Andreye Ermolinskiy, Doug Turnbull, George Tourtellot, Corrie Elder
- ISMIR, WASPAA, ICMC, DAFX, ICASSP, ICME