
IMPLICIT PATCHING FOR DATAFLOW-BASED
AUDIO ANALYSIS AND SYNTHESIS

Stuart Bray and∗George Tzanetakis
University of Victoria

Computer Science Department∗(Also in Music)

ABSTRACT

Programming software for audio analysis and synthesis is
challenging. Dataflow-based approaches provide a declar-
ative specification of computation and result in efficient
code. Most practitioners of computer music are familiar
with some form of dataflow programming where audio
applications are constructed by connecting components
with “wires” that carry data. Examples include networks
of unit generators in Music-V style languages and visual
patches in Max/Msp or PD. Even though existing dataflow-
based audio systems offer a concise conceptual model of
signal computation, this model does have limitations. In
many cases, these limitations are a consequence of the
programmer having to explicitly specify connections be-
tween components. Two such limitations are the diffi-
culty of handling spectral data and the need for fixed-size
buffers between components. In this paper we introduce
Implicit Patching(IP), a dataflow-based approach to audio
analysis and synthesis that attempts to address these limi-
tations. By extending dataflow semantics a large number
of connections are automatically created and buffer sizes
can be changed dynamically. The resulting model is also
particularly suited for distributed systems. We describe
Marsyas-0.2, a software framework based on IP, and pro-
vide examples that illustrate the strengths and limitations
of the proposed approach.

1. INTRODUCTION

There is a plethora of programming languages, frameworks
and environments for the analysis and synthesis of audio
signals. The processing of audio signals requires exten-
sive numerical calculations over large amounts of data es-
pecially when real-time performance is desired. Therefore
efficiency has always been a major concern in the design
of audio analysis and synthesis systems. Dataflow pro-
gramming is based on the idea of expressing computation
as a network of processing nodes/components connected
by a number of communication channels/arcs. Computer
Music is possibly one of the most successful application
areas for the dataflow programming paradigm. The ori-
gins of this idea can possibly be traced to the physical
re-wiring (patching) employed for changing sound char-
acteristics in early modular analog synthesizers. From the
pioneering work on unit generators in the MusicN fam-
ily of language to currently popular visual programming

environments such as Max/Msp and Pure Data (PD), the
idea of patching components to build systems is familiar
to most computer music practitioners.

Expressing audio processing systems as dataflow net-
works has several advantages. The programmer can pro-
vide a declarative specification of what needs to be com-
puted without having to worry about the low level imple-
mentation details. The resulting code can be very efficient
and have low memory requirements as data just “flows”
through the network without having complicated depen-
dencies. In addition, dataflow approaches are particularly
suited for visual programming. One of the initial moti-
vation for dataflow ideas was the exploitation of parallel
hardware and therefore dataflow systems are particularly
suited for parallel and distributed computation.

Despite these advantages, dataflow programming has
not managed to become part of mainstream programming
and replace existing imperative, object-oriented and func-
tional languages. Some of the traditional criticisms aimed
at dataflow programming include: the difficulty of ex-
pressing complicated control information, the restrictions
on using assignment and global state information, the dif-
ficulty of expressing iteration and complicated data struc-
tures, and the challenge of synchronization.

There are two main ways that existing successful dataflow
systems overcome these limitations. The first is to embed
dataflow ideas into an existing programming language.
This is called coarse-grained dataflow in contrast to fine-
grained dataflow where the entire computation is expressed
as a flow graph. With coarse-grained dataflow, compli-
cated data structures, iteration, and state information are
handled in the host language while using dataflow for struc-
tured modularity. The second way is to work on a domain
whose nature and specific constraints are a good fit to a
dataflow approach. For example, audio and multimedia
processing typically deals with fixed-rate calculation of
large buffers of numerical data.

Computer music has been one of the most successful
cases of dataflow applications even though the academic
dataflow community doesn’t seem to be particularly aware
of this fact. Existing audio processing dataflow frame-
works have difficulty handling spectral and filterbank data
in an conceptually clear manner. Another problem is the
restriction of using fixed buffer sizes and therefore fixed
audio and control rates. Both of these limitations can be
traced to the restricted semantics of patching as well as the

need to explicitly specify connections.Implicit Patching
the technique described in this paper is an attempt to over-
come these problems while maintaining the advantages of
dataflow computation.Marsyas-0.2is a software frame-
work for audio analysis and synthesis described in this pa-
per that is structured around the idea of IP. In order to illus-
trate the concept of IP we provide specific examples from
audio analysis, synthesis and distributed computation.

2. RELATED WORK

Dataflow programming has a long history. The original
(and still valid) motivation for reasearch into dataflow was
to take advantage of parallelism. Motivated by criticisms
of the classical von Neumann hardware architecture such
as [1, 2] dataflow architectures for hardware were pro-
posed as an alternative in the 1970s and 1980s. During
the same period a number of textual dataflow languages
such as Lucid [3] were proposed. Despite expectations
that dataflow architectures and languages would take over
from von Neumann concepts this didn’t happen. However
during 1990s there was a new direction of growth in the
field of dataflow visual programming languages especially
in specific application domains. Succesful commercial ex-
amples include Labview1 and SimuLink 2 . A recent
comprehensive review of the history of dataflow program-
ming languages can be found in [4]. Another recent trend
has been to view dataflow computation as a software engi-
neering methodology for building systems using existing
programming languages [5, 6].

It is interesting to note that the use of dataflow ideas
in Computer Music follows a similar trajectory. Initial
experimentation started in the 1960-1970s with modular
analog synthesizers that could be programmed by phys-
ically “patching” wires [7]. Textual dataflow program-
ming languages in Computer Music are exemplified by
the long legacy of the MusicN family whose most well
known and popular member today is Csound [8]. To-
day the use of visual dataflow programming environments
such as Max/MSP and Pure Data (PD) is pervasive in the
computer music community [9, 10]. An object-oriented
metamodel for digital signal processing that abstracts many
of the dataflow ideas used in audio and music processing
is presented in [11]. The use of object composition ad-
vocated in this paper has similar advantages to the use of
expressions in [12].

Marsyas 0.2, the software framework for audio anal-
ysis and synthesis described in this paper, evolved from
Marsyas 0.1[13] a framework that focused mostly on au-
dio analysis and Music Information Retrieval. One of mo-
tivating factors for the rewrite of the code and architecture
was the desire to add audio synthesis capabilities influ-
enced by the design of the Synthesis Toolkit [14]. Other
influences include the powerful but complicated flow ar-
chitecture of CLAM [11], the interesting patching model
of Chuck [15] and ideas from Aura [16]. The matrix model

1 http://www.ni.com/labview/
2 http://www.mathworks.com/products/simulink/

used inImplicit Patchingwas influenced by the design of
SDIFF [17] and the naming scheme for controls is inspired
by the Open Sound Control (OSC) format [18]. The code
structure was motivated by design patterns [19].

Implicit patching, the technique described in this pa-
per is illustrated with examples from audio analysis and
synthesis. The phasevocoder [20] is a well known compu-
tationally intensive audio synthesis algorithm. From audio
analysis we show how a standard audio feature extraction
front-end such as the ones described in [21] can be ex-
pressed inMarsyas-0.2.

3. MARSYAS-0.2 ARCHITECTURE

Marsyas-0.23 is a software framework, written in C++,
for rapid prototyping and experimentation with audio anal-
ysis and synthesis with specific emphasis on processing
music signals. The main goal is to provide a general, ex-
tensible and flexible framework that allows easy experi-
mentation with algorithms and provides the fast perfor-
mance necessary for developing real time audio analysis
and synthesis tools. A variety of existing building blocks
that form the basis of many published algorithms are pro-
vided as dataflow components that can be composed to
form more complicated algorithms (black-box functional-
ity). In addition, it is straightforward to extend the frame-
work with new building blocks (white-box functionality).
The goal of this section is not to provide an extensive
overview of the system architecture but provide the neces-
sary context to understand the ideas described in the paper.

In Marsyasterminology the processing nodes of the
dataflow network are calledMarSystemsand provide the
basic building blocks out of which more complicated sys-
tems are built. As will be shown in the next section essen-
tially any audio processing can be expressed as a large
compositeMarSystemwhich is assembled by appropri-
ately connected basicMarSystems. Some representative
MarSystemsprovide inMarsyas-0.2are the following:

• Input/Output (Sources and Sinks)

– Soundfile I/O for .wav,.au and .mp3 files

– Real-time audio I/O using RtAudio

– Matlab, Weka, Octave I/O

• Feature Extraction

– Short-Time Fourier Transform

– Discrete Wavelet Transform

– Centroid, Rollloff, Flux, Contrast

– Mel-Frequency Cepstral Coefficients

– Auditory filterbanks

• Synthesis

– Wavetable synthesis

– FM synthesis

3 http://marsyas.sourceforge.net

– Phasevocoder

• Machine Learning

– Gaussian Mixture Model classifier

– K-nearest neighbor classifier

– Principal Component Analysis

– K-Means clustering

In addition to being able to process data, in order for
MarSystemsto be useful, they need additional informa-
tion. For example aSoundFileSourceneeds to the name
of the soundfile to be opened and aGaincould be adjusted
while data is flowing through. This is accomplished by a
separate message passing mechanism. Therefore, simi-
larly to CLAM [11], Marsyas-0.2makes a clear distinc-
tion between data-flow which is synchronous and control-
flow which is asynchronous. BecauseMarSystemscan
be assembled hierarchically the control mechanism uti-
lizes a path notation similar to OSC [18]. For example
Series/playbacknet/Gain/g1/real/gainis the control name
for accessing the gain control of aGain MarSystemnamed
g1 in a Seriescomposite namedplaybacknet. A mecha-
nism for linking top-level controls to the longer full path
control names is provided. For example a single gain con-
trol at the top-level can be linked to the gain controls of
20 oscillators in a synthesis instrument. That way one-to-
many mappings can be achieved in a similar way to the
use of regular expressions in OSC [18].

Dataflow inMarsyas-0.2is synchronous which means
that at every “tick” a specific slice of data is propagated
across the entire dataflow network. This eliminates the
need for queues between processing nodes and enables the
use of shared buffers which improves performance. This
is similar to the way Unix pipes are implemented.

One of the most useful characteristics ofMarSystems
is that they can be instantiated at run-time. Because they
are hierarchically composable that means that any com-
plicated audio computation expressed as a dataflow net-
work can be instantiated at run-time. For example multi-
ple instances of any complicated network can be created
as easily as the basic primitiveMarSystems. This is ac-
complished by using thePrototypeandCompositedesign
patterns [19].

The combination of runtime instantiation and compos-
ability enables declarative specification of any dataflow
network without any code compilation required. This pro-
vides a lot of the flexibility of interpreted languages while
still retaining the fast performance of compiled code run-
ning inside eachMarSystem. The user only needs to actu-
ally compile source code when adding a newMarSystem
(creating a new type of processing object) or when trying
to perform some computation that can not be expressed
easily as a dataflow network. An alternative view of run-
time instantiation is that it is similar to audio plugins such
as VST that are hierarchically composable into networks.

Currently there are three ways to build audio analysis
and applications inMarsyas-0.2. The first is the tradi-
tional method of writing directly C++ code and compiling

Figure 1. Marsyas-0.2 Visual Patch Builder

an executable. The second is based on a simple scripting
language that provides syntactic constructs for building
the dataflow network, setting appropriately the controls
and moving sound through the network. The third way is
to use a visual patch builder which uses the scripting lan-
guage “under the hood”. The following code shows how
a simple network for soundfile playback can be specified
in the scripting language (with comments):

create instances
SoundFileSource src, Gain g1
AudioSink dest, Series pnet

add MarSystems to Series Composite
src, g1, dest > pnet

update control to play at half volume
Series/pnet/Gain/g1/real/gain 0.5

hear the sound
run pnet

EXAMPLE 1

Figure 1 shows the visual patchbuilder that can be used
for specifying dataflow networks and controls. It is our
belief that a powerful audio analysis and synthesis frame-
work should support both visual and textual programming
of the same underlying system. An example of such an
approach is described in [22].

4. IMPLICIT PATCHING

The basic idea behindImplicit Patching is to use object
composition rather than explicitely specifying connections
between input and output ports in order to construct the
dataflow network. For example the following pseudo-code
examples illustrates the difference ofExplicit andImplicit
Patchingin a simple playback network.

EXPLICIT PATCHING
create source, gain, dest
connect the appropriate in/out ports
connect(source.out1, gain.in1);
connect(gain.out1, dest.in1);

IMPLICIT PATCHING
create source, gain, dest
create a composite that
is essentially the network
create series(source, gain, dest);

EXAMPLE 2

The idea ofImplicit Patchingevolved from the integra-
tion of three different ideas that were developed indepen-
dently in previous versions of Marsyas. These three ideas
and how they are integrated are described bellow and in
the following section examples illustrating the expressive
power ofImplict Patchingare presented.

The first idea originated from the desire not to be con-
strained to fixed buffer sizes and to have proper semantics
for spectral data. The majority of existing audio process-
ing environments require that all processing objects in a
flow network/visual patch, process fixed size buffers of
audio samples (typical numbers are 64 or 128 samples).
Having fixed buffer sizes simplifies memory management
and simplifies patching as all connections are treated the
same way. However, some applications like audio fea-
ture extraction require a variety of different buffer sizes to
flow through the network (for example feature vectors typ-
ically have much lower dimensionality than audio data).
Even though it is possible to have dynamic buffer sizes in
explicit patching systems it is complex to implement and
frequently requires a lot of work from the programmer to
appropriately set the connections. In addition, these fixed
size buffers are reused for holding spectral data and it is up
to the programmer to correctly connect the spectral data to
objects that process such data. The result is that the exact
details of the Short Time Fourier Transform are encapsu-
lated as a black box and the programmer has little con-
trol over the process. Our proposed solution to these two
problems is to extend the semantics of the data that is pro-
cessed. In Marsyas-0.2, processing objects (MarSystems)
process chunks of data calledSlices. Slicesare matrices
of floating point numbers characterized by three parame-
ters: number of samples (things that “happen” at differ-
ent instances in time), number of observations (things that
“happen” at the same time instance) and sampling rate.
This approach is similar to the matrix approach used in
the Sound Description Interchange Format (SDIF) [17].

Figure 2 shows aMarSystemfor spectral processing
that converts an incoming audio buffer of 512 samples of
1 observation at a sampling rate of 22050 to 1 samples
of 512 observations (the FFT bins) at a lower sampling
rate of 22050/512. By propagating information about the
sampling rate and the number of observations through the
dataflow network, the use ofSlicesprovides more correct
and flexible semantics for spectral processing and feature

Figure 2. MarSystem and corresponding slices for spec-
tral processing

extraction.MarSystemsare designed so that they can han-
dle Sliceswith arbitrary dimensions with one important
constraint: they need to be able to calculate theirSlice
output parametersSlicefrom theirSliceinput parameters.
For example it is possible to change the input number of
samples to theMarSystemshown in Figure 2 to 1024 and
theMarSystemwill automatically determine that the num-
ber of observations of the outputSliceis also 1024.

The second major idea behindImplict Patchingis the
use ofCompositedesign pattern [23] as a mechanism for
constructing dataflow networks. The extended semantics
of Slicesrequire careful manipulation of buffer sizes espe-
cially if run-time changes are desired. The first composite
used wasSerieswhich connects a list ofMarSystemsin
series so that the output of the first one becomes the in-
put to the second etc (similar to Unix pipe mechanism).
The pseudo-code Example 2 above uses aSeriescompos-
ite. Initially composites were used a programming short-
cuts. However, gradually we discovered that they offer
many advantages and we decide to made them the main
mechanism for constructing complicatedMarSystemsout
of simpler ones. Their advantages include hierarchical
encapsulation, automatic dynamic handling of all inter-
nal buffers, and run-time instantiation. More specifically,
any dataflow network, no matter how complicated, is rep-
resented as a singleMarSystemhierarchically composed
of other simplerMarSystems, multiple instances of any
MarSystemscan be instantiated at run-time and all inter-
nal patching and memory handling is encapsulated.

The third idea was the unification ofSourcesandSinks
as regularMarSystemsthat have both input and output.
Sourcesare processing objects that have only output and
Sinksonly have input. In order to be able to use them
as anyMarSystemwe extend them in the following way:
Sourcesmix their output with their input andSinksprop-
agate their input to their output while at the same time
playing/writing their input. This way, for example, one
can connect aSoundFileSinkto aAudioSinkand the data
will be written both to a sound file and played using the
audio device. Basically in bothSourcesand Sinksdata
gets injected into the network as a side effect but they can
be used anywhere inside a network.

Figure 3. Fanout composite with buffers

Implicit Patchingis made feasible by the integration of
these three ideas. In this approach, eachMarSystemhas
only one input port and one output port and consumes/produces
only one token. However because of the extended se-
mantics ofSlicesone can essentially have multiple in-
put/output ports (as observations) and consume/produce
multiple tokens (as samples). This enables non-trivialCom-
positessuch asFanoutto be created. That way, the expres-
sive power of composition is increased and a large variety
of complex dataflow networks can be expressed only us-
ing object composition and therefore noExplicit Patching.

To illustrate this approach, consider theFanoutcom-
posite which takes as input a slice and is built from a list of
MarSystems. The input slice is then used as input to each
internalMarSystemand their outputs are stacked as obser-
vations in the outputSliceof the Fanout. For example a
filterbank can be easily implemented as aFanoutwhere
each filter is a internal componentMarSystem. The filter-
bankMarSystemwill take as input a slice ofN samples by
1 observations and write to an output slice ofN samples by
M observations, whereM is the number of filters. Because
the innter loops ofMarSystemsiterate over both samples
and observations if we connect the filterbank with, for ex-
ample, aNormalize MarSystemeach row of samples cor-
responding to a particular observation (each channel of the
filterbank) will be normalized appropriately. This can be
extremely handy in large filterbanks as the part of the net-
work after the filterbank doesn’t need to know how many
filter outputs are produced. This information is taken im-
plicitely from the number of observations. Figure 3 shows
graphically howSlicesare used in aFanout. The dot-

Figure 4. Comparison of Implicit Patching (left) and Ex-
plicit Patching (right)

ted lines show the patching that is done implicitely by the
Fanout. The black arrows show the main flow again cre-
ated implicitely by aSeriescomposite. In contrast, in en-
vironments with explicit patching such as Max/MSP each
connection between the filters of the filterbank and the in-
put would have to be created by the user. Figure 4 shows
the difference betweenImplicit Patching(left) where the
dotted lines are created automatically from the semantics
of compositing andExplicit Patching(right) where each
connection must be created separately. Even though en-
vironments such as Max/MSP or PD provide subpatching
the burden of internal patching is still on the user.

We conclude this section with a non-trivial example il-
lustrating the expressive power ofImplicit Patching. Fig-
ure 5 shows how a layer of nodes in an Artificial Neural
Network can be expressed using aFanout. The input to the
layer (the output of the previous layer) consists 4 numbers
x1, x2, x3, x4. These 4 numbers (observations) based on
theFanoutsemantics become the input to each individual
neuron (Ni) of the layer. Each neuron forms a weighted
sum (with weights specific to each neuron) of the input,
applies a sigmoid function to the sum and outputs a sin-
gle output. The outputs using theFanoutsemantics are
stacked as observationsy1, y2, y3 (one for each neuron)
ready for processing for the next layer. Figure 5 illustrates
this process graphically (left side) and contrasts it with ex-
plicit patching (right side). InMarsyas-0.2, creating an
artificial neural network using an annNodeMarSystemis
simply a series of fanouts of annNodes (more specifically
seriesNet(fanoutLayer1, fanoutLayer2, ..., fanoutLayerM)
where fanoutLayer1(annNode11, annNode12, ..., annN-
ode1N). All the connections are created implicitely.

5. EXAMPLES

In this section, examples from audio analysis, synthesis
and distributed computation are used to illustrate howIm-
plicit Patchingcan be used in practice. All the provided
examples have been implemented inMarsyas-0.2and their

Figure 5. Layer of an Artificial Neural Network

source code is available as part of the distribution.

Figure 6 shows a dataflow network for extracting audio
features for real-time music/speech classification. Series
connections are top to bottom and Fanout connections are
shown by forking horizontally. For example the output of
theSpectrumcalculation is used as input to theCentroid,
Rolloff, andFlux MarSystems. The input to texture mem-
ory is 4 observations (the features) by 1 sample and the
output is 40 samples consisting of the last 40 feature vec-
tors (corresponding to approximately 1 second). Means
and variances of the feature vector over the texture win-
dow are calculated and the input to the classifier is a 8-
dimensional feature vector (4 means, 4 variances). The
entire network can be created at run-time without requir-
ing any code compilation. The complete feature extrac-
tion front-end described in [21], has been implemented as
a dataflow network inMarsyas-0.2in a similar fashion.

The Phasevocoder ([20]) is a well-known computation-
ally intensive audio processing technique that allows inde-
pendent control of pitch and time shifting of sounds. The
phasevocoder, inMarsyas-0.2, can be fully specified as a
dataflow network created withImplicit Patching. Even on
a Pentium III laptop, this implementation is fast enough
to run in real-time. The fact that the entire dataflow net-
work can be specified at runtime together with the use
of composites allows interesting applications to be cre-
ated with minimum effort. For example, it is easy to cre-
ate a real-time harmonizer, by creating four instances of
a phasevocoder network with different amounts of pitch
shifting and adding them to aFanout that is connected
in Serieswith live audio input. This entire process can
be accomplished with minimum effort, no code recompi-
lation while retaining the real-time performance of com-
piled code. Figure 8 shows how such a harmonizer can
be distributed over multiple computers.

Figure 6. Feature Extraction Network for real-time Mu-
sic/Speech classification

5.1. Distributing Audio Computation

There are two standard data communication protocols used
on the Internet: transmission control protocol (TCP), and
user datagram protocol (UDP). They are both part of the
TCP/IP protocol suite, and are used in conjunction with
the Internet protocol (IP) to provide a bridge for packet de-
livery to the target application. Packets on an IP network
may arrive out of order, damaged, or not at all; hence,
TCP is used to manage these issues so that data is re-
ceived correctly. This extra reliability also means extra
overhead, primarily due to acknowledgement messages
(ACK), packet retransmissions, flow control, and extra in-
formation in the TCP header. The UDP protocol is a much
simpler protocol that provides the same bridge to target
applications, but no reliability. Commonly referreed to as
a best-effort service, UDP therefore is much faster and is
the preferred protocol for real-time data such as audio and
video. Packets can arrive late, out of order, damaged, or
not at all; however, it is up to the application layer to pro-
vide a mechanism to deal with these issues.

Marsyas-0.2supports both the UDP and TCP proto-
cols. In order to send data to another machine, a “network
sink” object is simply inserted somewhere in the flow of a
MarSystem. In order to receive data, a “network source”
object is inserted. Control flow and data flow are man-
aged seperately so that controls can be changed from the
sender and propagate through the system. The idea is that
a user can operate several worker machines and the view
of the distributed system is abstracted as one large com-

Figure 7. Distributed audio feature extraction

of Computers 1L 1W 2W 3W
Minutes 9:39 11:48 6:01 5:49

Table 1. Distributed Feature Extraction Experiments
(1000 30-second clips)

positeMarSystem.
In the next subsections we illustrate the network-aware

MarSystemsby describing two classic applications in au-
dio analysis and synthesis: distributed audio feature ex-
traction, and a real-time distributed harmonizer implemented
using multiple instances of a phasevocoder.

5.2. Distributed Audio Feature Extraction

This application uses the TCP protocol in order to guaran-
tee that all data is received and the correct features are
calculated. The point of the experiment was to reveal
the time advantage of using several machines processing
features in parrallel rather than just one machine. A dis-
patcher process was used to distribute audio files to each
machine in the system, and a collector process was used
to gather the features as they were calculated (see figure
7. In order to compare the operation to feature calcula-
tion on one computer, both the dispatcher and collector
were operating on the same machine. Our exrperiment
took place on a 100Base-T Ethernet LAN with single pro-
cessor Apple G5 computers running OS X. We found that
using three or four machines gave optimal performance,
and adding more machines gave minimal improvement,
likely due to the sending capacity of the dispatcher. For
these experiments all the data is stored in the dispatcher
and there is no replication. Table 1 shows results for ex-
tracting feature from a collection of 1000 30-second clips.
Computing the features on a single machine is denoted 1-

Figure 8. Real-time distributed harmonizer

L, and for the other entries the single dispatcher/collector,
multiple worker scheme of figure 7 is used. As can be
seen, the overhead of network transmission with only 1
worker (1W) doesn’t pay off, but after that signficant sav-
ings in feature extraction time can be achieved by dis-
tributing computation. Of course, if data replication is
allowed these results can be further improved.

5.3. Real-time distributed phasevocoder

Transmission of real-time data over packet switched net-
works has received widespread attention in recent years;
most recently with the introduction of the Real-Time Trans-
port Protocol (RTP). This protocol standardizes a way for
programs to manage time critical data over networks, pro-
viding isochronous data transfer between hosts. Typically
managed on top of the UDP protocol in the application
layer, RTP provides mechanisms such as timestamps and
sequence numbers, so that packets that arrive late or out
of sequence can simply be discarded. Marsyas does not
yet support the RTP protocol; however, due to negligable
propagation delay on a 100Base-T LAN we decided to test
the application with UDP only. Future work will indeed
consist of providing support for RTP in Marsyas.

The goal of this experiment was to parallelize audio
synthesis over several machines and collect their sum at
a destination point. Audio was sent from one machine
to several worker machines. Each worker machine, pitch
shifts the audio differently using a phasevocoder. The re-
sults are all sent to one destination where they are summed
and played back. Figure 8 is a diagram of this process.

6. DISCUSSION

In this paper,Implicit Patchingan extension to the usual
dataflow model used in Computer music was presented.
This model addresses some of the limitations of exist-
ing systems by providing flexible audio and control rates,
dynamic readjusting of buffer sizes and a structured ap-
proach to creating dataflow networks that is based on ob-
ject composition rather than explicit patching. Examples
from audio analysis, synthesis and distributed processing
were used to illustrate this approach.

Of course there are limitations ofImplicit Patching.
Everytime sound is propagated through the network all
MarSystems must finish computing. Therefore, if some-
where in the network there is a very slowMarSystemit
will determine the overall speed of processing. More gen-
eral dataflow environments don’t have that limitation at
the cost of more complex implementation and performance
penalties. Another limitation is the inability to express
feedback loops on the dataflow level using the existing
Composites. One possible solution we are exploring is to
try to come up with Composites for feedback loops.

Finally, even thoughImplicit Patchingwas presented
in contrast toExplicit Patchingthey are not mutually ex-
clusive. For example it is possible to still have multiple
input/output ports or explicitely make connections (for ex-
ample for feedback loops) on top of the dataflow infras-
tructure described in this paper. It is our hope that that
Implicit Patchingwill be useful in other programming lan-
guages and environments for audio processing.

7. REFERENCES

[1] W. Ackerman, “Data flow languages,”IEEE Com-
puter, vol. 15, no. 2, pp. 15–25, 1982.

[2] J. Backus, “Can programming be liberated from the
von neumann style ? a functional style and its al-
gebra of programs,”Communications of the ACM,
vol. 21, no. 8, pp. 613–641, Aug 1978.

[3] W. Wadge and E. Ashcroft,Lucid, the dataflow pro-
gramming language, ser. APIC Studies in Data Pro-
cessing. New York, NY: Academic Press, 1985.

[4] W. Johnston, J. Paul Hanna, and R. Millar, “Ad-
vances in dataflow programming languages,”ACM
Computing Surveys, vol. 36, no. 1, pp. 1–34, March
2004.

[5] D.-A. Manolescu, “A data flow pattern language,” in
Proceedings of the 4th Pattern Languages of Pro-
gramming, Monticello, Illinois, September 1997.

[6] J. Morrison,Flow-based Programming: A New Ap-
proach to Application Development. New York,
NY: van Nostrand Reinhold, 1994.

[7] J. Chadabe, “The voltage-controlled synthesizer,” in
The development and practice of electronic music,
J. Appleton, Ed. Prentice-Hall, New Jersey, 1975.

[8] R. Boulanger, The Csound book. Cambridge,
Mass.: MIT Press, 2000.

[9] D. Zicarelli, “How i learned to love a program that
does nothing,”Computer Music Journal, vol. 26,
no. 4, pp. 44–51, 2002.

[10] M. Puckette, “Max at seventeen,”Computer Music
Journal, vol. 26, no. 4, pp. 31–43, 2002.

[11] A. Xavier, “An object-oriented metamodel for digital
signal processing with a focus on audio and music,”
Ph.D. dissertation, Univ. of Pompeu Fabra, 2005.

[12] R. Dannenberg, “Machine tongues xix: Nyquist, a
language for composition and osound,”Computer
Music Journal, vol. 21, no. 3, pp. 50–60, 1997.

[13] G. Tzanetakis and P. Cook, “Marsyas: A frame-
work for audio analysis,”Organised Sound, vol.
4(3), 2000.

[14] P. Cook and G. Scavone, “The Synthesis Toolkit
(STK), version 2.1,” inProc. Int. Computer Music
Conf. ICMC. Beijing, China: ICMA, Oct. 1999.

[15] G. Wang and P. Cook, “Chuck: A concurrent, on-
the-fly audio programming language,” inProc. Inter-
national Computer Music Conference (ICMC), Sin-
gapore, September 2003.

[16] R. Dannenberg and E. Brandt, “A flexible real-
time software synthesis system,” inProc. Interna-
tional Computer Music Conference (ICMC), 1996,
pp. 270–273.

[17] D. Schwarz and Wright.M., “Extensions and appli-
cations of the sdif sound description interchange for-
mat,” in Proc. International Computer Music Con-
ference (ICMC), 2000.

[18] M. Wright and A. Freed, “Open sound control: A
new protocol for communicating with sound syn-
tesizers,” inProc. Int. Computer Music Conference
(ICMC), Thessaloniki, Greece, 1997, pp. 101–104.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

[20] M. Dolson, “The phase vocoder: A tutorial,”Com-
puter Music Journal, vol. 10, no. 4, 1986.

[21] G. Tzanetakis and P. Cook, “Musical Genre Classi-
fication of Audio Signals,”IEEE Trans. on Speech
and Audio Processing, vol. 10, no. 5, July 2002.

[22] R. Dannenberg, “Combining visual and textual rep-
resentations for flexible interactive audio signal pro-
cessing,” in Proc. International Computer Music
Conference (ICMC), 2004.

[23] W. Grosky, R. Jain, and R. Mehrotra, Eds.,The
handbook of Multimedia Information Management.
Prentice Hall, 1997.

