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Figure 1: The effect of delaying a phasor by τ sec. The dashed phasor is the
delayed version of the original

These notes are based on material from the Digital Signal Pro-
cessing Primer by Ken Steiglitz.

Feedforward Filters

Filters combine delayed versions of signals and signals are made up of phasors.
Therefore, understanding the effect of delaying a phasor is key to everything
there is to know about filters.

If we delay the phasor ejωt by τ sec, we get

ejω(t−τ) = e−jωτejωt (1)

We se from this that a delay of τ sec multiplies the phasor by the complex
factor e−jωt, which does not depend on time t, but only on the amount of
delay τ and the frequency ω. This factor rotates the original phasor by the
angle −ωt, while leaving its magnitude unchanged. This is illustrated in
Figure 1.

A simple filter

We will consider a very simple filter: start with a signal x and add to it some
constant a1 times a delayed version of itself:
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Figure 2: The effect of delaying a phasor by τ sec. The dashed phasor is the
delayed version of the original

yt = xt + a1xt−τ (2)

The corresponding signal flowgraph is shown in Figure 2. Filters that
use only branches that delay the input signal are called feeeedforward filters.

Let’s consider the effect of this simple filter when the input x is a phasor
at a particular frequency ω, ejωt. Based on equation 2 we see that the output
is the sum of two phasors of the same frequency, which we know is also a
phasor of that frequency:

yt = ejωt + a1e
jω(t−τ) (3)

We can rewrite this equation by factoring out the phasor:

yt = [1 + a1e
−jωτ ]ejωt (4)

This equation shows that the output of the filter when the input is a
single phasor at frequency ω is also a phasor at the frequency ω. It also
shows that the effect of the filter on the input phasor is to multiply it by the
complex function in brackets on the right-hand side. Let’s call the filter H
and denote that complex function by:

H(ω) = 1 + a1e
−jωτ (5)

This function is called the filter’s frequency response. Notice that H(ω)
depends on the frequency ω and on the fixed parameter τ of the filter, but
not on time t. H(ω) tells everything we need to know about what the filter
does to the input phasor.

To see how we can use that information write H(ω) in polar form as:
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H(ω) = |H(ω)|ejθ(ω) (6)

The magnitude |H(ω)| is called the magnitude response of the filter, and
the angle θ(ω) is called the phase response. Since the input phasor is mul-
tiplied by H(ω), this tells us that the filter multiplies the size of the input
phasor by the filter’s magnitude response, and shifts its phase by the filter’s
phase response.

The magnitude response of our filter is:

|H(ω)| = |1 + a1e
−jωτ | (7)

which is:

|H(ω)| = |1 + a2
1 + 2a1cos(ωτ)|

1
2 (8)

Digital Filters

Implementing filters digitally on a computer presents some specific con-
straints and pecularities that we discuss. When we use a computer to store
signals in arrays we are only alloed to delay signals by an integer number of
samples because the time variable corresponds to the array index. There-
fore on a computer, the supported delays have to be integer multiples of the
sampling period Ts.

The other important restriction is that in the digital world, frequencies
above half the sampling frequency, don’t really exist - we think of them as
aliased to frequencies below the Nyquist frequency. This means that the
frequency plots of the magnitude responses for digital filters need not extend
beyond the Nyquist frequency. It is usually convenient to normalize the
frequency variable in such plots to the sampling rate, making the Nyquist
frequency equal to 0.5. In this case frequency is expressed as fractions of the
sampling rate.

In the digital domain instead of measuring frequency in radians/second we
will use radians/sample. We can always go back to “real” time by knowledge
of the sampling period Ts. That way the digital sampling frequency is then
ω = 2π radians per sample (a full cycle between samples), and the Nyquist
frequency is ω = π radians per sample (half a cycle between samples).
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Using this new notations we will measure t in integer samples. A very
simple example of a digital filter is using a delay of one sample with one
feedforward term:

yt = xt + a1xt−1 (9)

Digital filters can have more than one or two terms. In fact it is possible
to design and implement filters with hundreds of terms. How can we possibly
know how to selecct a few hundred coefficients so that the resulting digital
filter has some desired, predetermined effect ? This question is called the filter
design problem. Fortunately, it is almost completely solved for feedforward
digital filters. The mathematical problems involved were worked out in the
1960s and 1970s, and design packages are now widely available. The narrower
the transition bands and the more exacting the applitude specifications, the
more terms we need in the filter to meet the specifications.

Delay as an operator

If the input to the following feedforward filter is the phasor ejωt,

yt = a0xt + a1xt−1 (10)

the output is also a phasor:

yt = xt[a0 + a1e
−jω] (11)

In general, with many delay terms, each term in Equation (10) of the
form akxt−k will result in a term of the form ake

−kjω in Equation (11).
Instead of writing ejω over and over, we introduce the symbol:

z = ejω (12)

A delay of a phasor by k sampling intervals is the represented simply by
multiplication by z−k. Multiplication by z means the phasor is advanced one
sampling interval, an operation that will be much less common than delay
because it is more difficult or impossible to achieve in practical situations.

Notation can have a profound effect on the way we think. Finding the
right notation is often the key to making progress in a field. A simple thing
like using the symbol z−1 for delay is such an example. We are going to treat
z−1 in two fundamentally different ways: as an operator (in this section) and
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as a complex variable (in the next). Both interpretations will be useful in
advancing our understanding of digital filters.

An operator is a symbol that represents the application of an action on
an object. For example we can represent rotating a piece of paper by +90
degrees by the operator p. If we represent the paper by the symbol P , then
we write pP to represent the result of applying the operator p to P ; that is,
pP represents the page actually rotated by +90 degrees. The operator p−1

is the inverse operator, in this case rotation by -90 degrees. The operator p2

applied to a page turns it upside down and p4 has no net effect, etc.
In the same way, let’s use the symbol X to represent a signal with sample

values xt. Note carefully the distinction: X represents the entire signal
whereas xt represents the valu of the signal at a particular time.

The entire signal delayed by one sampling interval is then represented by
z−1. Here z−1 is an operator, which operates on the signal X. We can then
rewrite the filter equation:

yt = a0xt + a1xt−1 (13)

as:
Y = a0X + a1z−1X = [a0 + a1z

−1]X (14)

Notice that in this equation when we write a0X it represent the signal
obtained by multiplying every value of of X by the constant a0. It doesn’t
matter whether we multiply by a constant and then delay a signal, or first
delay and then multiply so the order we write these operators is immaterial.
In other words, the operator “multiply by a constant” commutes with the
delay operator.

The above notation is very suggestive. It tells us to interpret the exper-
ession in brackets as a single operator that represents the entire filter. We
will therefore rewrite the equation as:

Y = H(z)X (15)

where
H(z) = a0 + a1z

−1 (16)

The operator H(z) will play a central role in helping us think about and
manipulate filters; it is called the filter’s tranferfunction, H.

As a first example of how we can use tranfer functions, consider what
happens when we have two simple filters one after the other. This is called
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a cascade conection. The first filter produces the output signal W from the
input signal X; the second produces the output Y from input W . Suppose
the first filter has the transfer function:

G(z) = a0 + a1z
−1 (17)

and the second:
H(z) = b0 + b1z

−1 (18)

The overall transfer function of the two filters combined can be written:

Y = H(z)W = H(z)[G(z)X] (19)

The suggestive notation we’ve derived is now presenting us with a great
temptation. Why not multiply the two operators together as if they were
polynomials ? If we do we get:

H(z)G(z) = (a0+a1z
−1)(b0+b1z−1) = a0b0+(a0b1+a1b0)z

−1+a1b1z
−2 (20)

Can we get away with this ? The answer follows quickly from what
we know about ordinary polynomials. We get away with this sort of thing
in that case because of the distributive, associative, and commutative laws
of albebra hold for combining the operators in transfer functions: delays,
additions and multiplies-by-constants. For example, delaying the sum of two
signals is completely equivalent to summing after the signals are delayed.
Therefore, we are permitted to treat transfer functions the way we treat
ordinary polynomials and arrive at correct conclusions.

Multiplying the transfer functions shows that connection of two filters is
equivalent to a single three-term filter. This just begins to illustrate how
useful transfer functions are. We got to this equivalent form of the cascade
filter with hardly any effort at all.

Here’s another example of how useful transfer functions are. Multiplica-
tion commutes: therefore filtering commutes. That means we get the same
result if we filter first by H and then by G, because:

G(z)H(z) = H(z)G(z) (21)

This is hardly obvious from the filter equations alone. Interpreting z−1 as the
delay operator gives as a whole new way to represent the effect of a digital
filter: as multiplication by a polynomial. We now consider the interpretation
of z as a complex variable.
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The z-plane

We can gain some useful insights into how filters work by looking at the
features of the transfer function in the complex z-plane. Let’s go back to a
simple digital filter like the one we used earlier:

yt = xt − a1xt−1 (22)

The effect on a phasor is to multiply it by the compelx function of ω

1− a1e
−jω = 1− a1z

−1 (23)

Remember that we introduced z as shorthand:

z = ejω (24)

If we now now have any transfer function at all, say H(z), the correspond-
ing frequency response is therefore:

H(ω) = H(ejω) (25)

That is, to get the frequency response, we simply interpret the transfer
function as a function of the complex variable z, and evaluate it for values
of z on the unit circle. The range of values we are interested in runs from
ω = 0 to the Nyquist frequency ω = π radians per sample. This is the top
half of the unit circle in the z-plane.

Let’s take a closer look at the transfer function in our example. It’s just

H(z) = 1− a1z
−1 (26)

We can rewrite this as a ratio of polynomials, so we can see where the
roots are:

H(z) =
z − a1

z
(27)

There is a zero in the numerator at z = a1, and a zero in the denominator
at z = 0. That is the transfer function becomes zero at a1 and infinite at the
origin.

The magnitude response is the magnitude of H(z) for z on the unit circle:

|H(ω)| = |z − a1|
|z|

for z = ejω (28)
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Figure 3: Evaluating the magnitude response of a simple feedforward filter.
The factor |z−a1| is the length of the vector from the zero at a1 to the point
on the unit circle corresponding to the frequency ω.

The demonimator is one, because z is on the unit circle. In fact, for
feedforward filters the only possible zeros in the denominator occur at the
origin, and these don’t affect the magnitude response for the same reason -
the magnitude of z on the unit circle is one. We can therefore rewrite the
equation as:

|H(ω)| = |z − a1| for z = ejω (29)

Figure 3 shows a geometric interpretation of this expression. It is the
length of the vector from the zero at z = a1 to the point on the unit cir-
cle representing the frequency ω at which we are evaluating the magnitude
response.

This is an elightening interpretation. Picture walking along the unit circle
from 0 to the Nyquist frequency. When we are close to the zero, the length
of this vector is small, and therefore so is the magnitude response at the
frequency corresponding to our position on the unit circle. Conversely, when
we are far from the zero, the magnitude response will be large. We can tell
directly from Figure 3 that a zero near z = 1 will result in a filter that passes
high frequencies better than low - a highpass filter. On the other hand a zero
at z = −1 results in a lowpass filter.
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Homework

Show the detailed steps of going from equation (7) to equation (8). Using
MATLAB plot this magnitude response when a1 = 0.99 and the delay τ =
167 milliseconds. Where are the notches of the filter located ?

Find the magnitude response of the digital filter of equation (9). How
many notches does that filter have ? Where are they ? Where is the peak of
the filter ? Is it high-pass or low-pass ?
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