
Richard Gibson CSC 421 Assignment #4 Apr. 4, 2006

#0235677

Probability Theory

Suppose that we are given cipher texts which encode messages in such a way that

each letter of the alphabet is mapped to a sequence of 3 letters so that the frequency

counts of each letter in the cipher text are approximately equal. Here is how the text can

be broken:

Since letter frequencies are approximately equal in the cipher text, directly counting the

letter frequencies will do us no good. However, it will do us some good to count the

number of times a letter occurs given the previous two letters since sequences of 3 letters

are used for the encryption. Assuming that there are n letters in our alphabet, we can do

this by setting up an n-by-n-by-n table and making a tally of when a letter occurs after the

previous two letters. For instance, if we find an “a” in our cipher text in which the 2

letters immediately preceding it are “bc”, then we would tally this in the (b,c,a)-entry of

our table. In other words, we make the Markov assumption that a letter only depends on

it’s previous two letters. After completely examining all cipher texts, the entry with the

highest tally is then the most common sequence. Assuming that we know the frequencies

of the “real” letters in the language, we could make a good guess that the most frequent

letter in the alphabet is mapped to the most frequent sequence in the table, the second

most frequent letter to the second most frequent sequence, and so on. For instance, if the

(r,s,t)-entry of the table has the highest tally, then we would guess that the most frequent

letter in our language is mapped to the 3 letter sequence “rst”. With a bit of

experimenting, the code can be easily solved.

 Suppose now that we are given cipher texts which encode messages as follows:

For each letter of the alphabet that needs to be encoded, a 6-sided unbiased die is rolled 6

times and the sum of the numbers rolled is noted. Then a notebook is consulted which

contains a table with substitution entries for each possible value of the sum. This process

can be modeled as a Hidden Markov Model as follows:

• Let Lt be the t
th

 letter of the real message. These are the state variables of the

HMM which are hidden from us.

• Let Et be the t
th

 letter of the cipher text which encodes the real message. These

are the evidence variables of the HMM which are directly observable.

• I will make the first-order Markov assumption that any given letter in this

language only depends on the previous letter; i.e. P(Lt | L0:t-1) = P(Lt | Lt-1).

• The transition model is obtained from our knowledge of the real language of how

frequently certain letters follow other letters, and give us P(Lt | Lt-1). Therefore

the transition model will be an n-by-n table (where n is the number of letters in

the alphabet) where, for instance, if we know that the letter “t” is followed by the

letter “h” 5% of the time in our language, then the P(Lt = h | Lt-1 = t) entry of our

table will be 0.05.

• The sensor model is obtained from the entries in the notebook used to encode the

messages (assuming that we have access to this notebook) and give us the values

of P(Et | Lt). This is done by summing the probabilities of all the rolls for Lt that

use Et to encode it. For instance, if we are encoding the letter “a” and if (6,b) and

(36,b) are the only 2 entries in the table for “a” in which it is encoded by “b” (i.e.

all other rolls dictate “a” to be encoded by a letter other than “b”), then P(Et = b |

Lt = a) = 1/6
6
 + 1/6

6
 = 2/6

6
 because the probability of rolling a sum of 6 (and

similarly 36) is 1/6
6
.

• A reasonable prior probability distribution P(L0) would be to simply use the

frequencies of each real letter appearing in the language (which we assume we

have sufficient knowledge of).

 Lt-1 Lt Lt+1

 Et-1 Et Et+1

 Figure 1: Baysian network topology of our Hidden Markov Model

Now to break the code, we want to perform the inference task of finding the most likely

sequence of the letter variables L1, L2, L3, … , Lk that produced the sequence of encoded

letters e1, e2, … , ek. This can be done using the Viterbi algorithm as follows:

• View the possible state sequences for Lt as paths through a graph.

• For each t, calculate the message m1:t which gives the probability of the best

sequence reaching each state at time t. Also keep track of each state’s most likely

predecessor.

The probability of the best sequence m1:t can be computed recursively as follows:

m1:t+1 = maxx1, … , xt P(x1, … , xt Xt+1 | e1:t+1)

 = P(et+1 | Xt+1) maxxt { P(Xt+1 | xt) maxx1, … , xt-1 P(x1, … , xt-1, xt | e1:t) }

In other words, just select the most likely letter that comes next given the evidence and

the most likely sequence up to this point. To make this more concrete, here is an

example of how this is done. Suppose that our language contains only 2 letters “a” and

“b” and that we know that the letter “a” is followed by another “a” 70% of the time and

that the letter “b” is followed by another “b” 45% of the time. Suppose also that there is

a 40% chance that the letter “a” is encoded by the letter “a” and an 80% chance that the

letter “b” is encoded by the letter “b” (governed by the likelihoods of the corresponding

rolls in the notebook). Assume that the frequencies of each letter in the language are

approximately equal. Then we have the following transition and sensory models:

Table 1: Transition model

Lt-1 P(Lt = a | Lt-1) P(Lt = b | Lt-1)

a 0.7 0.3

b 0.55 0.45

Table 2: Sensor model

Lt P(Et = a | Lt) P(Et = b | Lt)

a 0.4 0.6

b 0.2 0.8

Suppose we want to try to decode the message “aba”. Now given that the frequencies of

each letter in the language are approximately equal, we have P(L0) = <P(L0 = a), P(L0 =

b)> = <0.5, 0.5>. Here are the computations:

m1:1 = P(L1 | E1 = a)

 = P(E1 = a | L1) (P(L1 | L0 = a)P(L0 = a) + P(L1 | L0 = b)P(L0 = b))

 = <0.4,0.2> (<0.7,0.3>0.5 + <0.55,0.45>0.5) = <0.25,0.075>

 = <0.7692,0.2308>.

m1:2 = maxγ P(L1 = , L2 | E1 = a, E2 = b)

 = P(E2 = b | L2) maxγ { P(L2 | L1 =)P(L1 = | E1 = a) }

 = <0.6,0.8> max { <0.7,0.3>0.7692, <0.55,0.45>0.2308 }

 = <0.6,0.8> max { <0.5384,0.2308>, <0.1269,0.1039> }

 = <0.3230, 0.1846>

 = <0.6363,0.3637> (most likely predecessors for both states is L1 = a).

m1:3 = maxγ
1,
γ

2 P(L1 = 1, L2 = 2, L3 | E1 = a, E2 = b, E3 = a)

 = P(E3 = a | L3) maxγ
2 {P(L3 | L2 = 2) maxγ

1 P(L1 = 1, L2 = 2 | E1 = a, E2 = b)}

 = <0.4,0.2> max { <0.7,0.3>0.6363, <0.55,0.45>0.3637 }

 = <0.4,0.2> max { <0.4454,0.1909>, <0.2000,0.1637> }

 = <0.1782,0.0382>

 = <0.8235,0.1765> (most likely predecessors for both states is L2 = a).

 E1 = a E2 = b E3 = a

Lt = a 0.7692 0.6363 0.8325

Lt = b 0.2308 0.3637 0.1765

 m1:1 m1:2 m1:3

Figure 2: Most likely sequence of our two letter alphabet example

Therefore, following the bold arrows backwards from L3 = a, we see that the most likely

sequence is “aaa” and is therefore the best answer for decoding the message.

Learning and Decision Trees

 I have chosen to base my decision tree on whether a board game will be fun or not

given a set of attributes describing the game. Here is a set of training data:

Suggested Age

Group

Average Time

to Play (in

hours)

Maximum

Number of

Players

Type of Game Fun

Adults 1 6 Carcassonne +

Kids <1 4 Other -

Adults 3 6 Other -

Kids 2 2 Other +

Adults 2 6 Settlers +

Adults 3 6 Settlers +

Kids 1 4 Other -

Adults 2 6 Carcassonne +

Adults 1 2 Carcassonne +

Adults >3 6 Settlers -

Adults >3 4 Other -

Adults 2 2 Other -

Kids <1 6 Other -

Adults 2 4 Other -

Adults 2 6 Carcassonne +

Adults 2 6 Other +

Kids 2 4 Other -

Adults 2 4 Settlers +

Adults >3 4 Settlers -

Adults 2 6 Carcassonne +

Here is the full trivial decision tree based on the training set above:

Age

 Kids Adults

 Time Time

 <1 1 2 1 2 3 >3

 - - Players + Players Game -

 2 4 2 4 6 Settlers Other

 + - - Game + + -

 Settlers Other

 + -

Figure 3: Default decision tree based on the training data

Now using the information-gain heuristic on the training data, we can learn a

simpler decision tree as follows:

First, we need to find the attribute that minimizes the remainder of information needed to

classify a new example. For each attribute A, we can separate the training data in sets Ei

according to their values for A. Then we have

 Remainder (A) = ∑i (pi + ni)/(p + n) I(pi/(pi + ni), ni/(pi + ni))

where pi and ni are the number of positive and negative examples in Ei respectively, p and

n are the total number of positive and negative examples in the entire training data, and

I(a, b) = -a log2 a – b log2 b

Here are the computations:

 Remainder (Age) = 5/20 I(1/5, 4/5) + 15/20 I(9/15, 6/15)

 = 0.25(-0.2 log2 0.2 – 0.8 log2 0.8) + 0.75(-9/15 log2 9/15 – 6/15 log2 6/15)

 0.9087

 Remainder (Time) = 2/20 I(0, 1) + 3/20 I(2/3, 1/3) + 10/20 I(7/10, 3/10)

 + 2/20 I(1/2, 1/2) + 3/20 I(0, 1)

 = 0 + 0.15(-2/3 log2 2/3 – 1/3 log2 1/3)

 + 0.5(-0.7 log2 0.7 – 0.3 log2 0.3) + 0.1(-log2 0.5) + 0

 0.6784

Remainder (Players) = 3/20 I(2/3, 1/3) + 7/20 I(1/7, 6/7) + 10/20 I(7/10, 3/10)

 0.7855

Remainder (Type) = 5/20 I(1,0) + 5/20 I(3/5, 2/5) + 10/20 I(2/10, 8/10)

 0.6037

Since the attribute “Type” has the smallest remainder, it will become the root of our new

decision tree. Then for each value v that type takes on (Carcassonne, Settlers, and

Other), we repeat the process using only the examples of the training data where

Type = v and find the best remaining attribute. We continue in this fashion until the

whole tree is complete.

The training data was written as a Weka attribute file and then evaluated using the ID3

classifier in Weka explorer to find a learned decision tree:

In file “games.arff”:

@relation Board_Games

@attribute age {adults, kids}

@attribute time {<1, 1, 2, 3, >3}

@attribute players {2, 4, 6}

@attribute type {carcassonne, settlers, other}

@attribute fun {yes, no}

@data

adults,1,6,carcassonne,yes

kids,<1,4,other,no

adults,3,6,other,no

kids,2,2,other,yes

adults,2,6,settlers,yes

adults,3,6,settlers,yes

kids,1,4,other,no

adults,2,6,carcassonne,yes

adults,1,2,carcassonne,yes

adults,>3,6,settlers,no

adults,>3,4,other,no

adults,2,2,other,no

kids,<1,6,other,no

adults,2,4,other,no

adults,2,6,carcassonne,yes

adults,2,6,other,yes

kids,2,4,other,no

adults,2,4,settlers,yes

adults,>3,4,settlers,no

adults,2,6,carcassonne,yes

Weka explorer output using ID3 classifier:

=== Run information ===

Scheme: weka.classifiers.trees.Id3

Relation: Board_Games

Instances: 20

Attributes: 5

 age

 time

 players

 type

 fun

Test mode: evaluate on training data

=== Classifier model (full training set) ===

Id3

type = carcassonne: yes

type = settlers

| time = <1: null

| time = 1: null

| time = 2: yes

| time = 3: yes

| time = >3: no

type = other

| players = 2

| | age = adults: no

| | age = kids: yes

| players = 4: no

| players = 6

| | time = <1: no

| | time = 1: null

| | time = 2: yes

| | time = 3: no

| | time = >3: null

Time taken to build model: 0 seconds

=== Evaluation on training set ===

=== Summary ===

Correctly Classified Instances 20 100 %

Incorrectly Classified Instances 0 0 %

Kappa statistic 1

Mean absolute error 0

Root mean squared error 0

Relative absolute error 0 %

Root relative squared error 0 %

Total Number of Instances 20

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 1 0 1 1 1 yes

 1 0 1 1 1 no

=== Confusion Matrix ===

 a b <-- classified as

 10 0 | a = yes

 0 10 | b = no

Type

 Carcassonne Settlers Other

 + Time Players

 2 3 >3 2 4 6

 + + - Age - Time

 Adults Kids <1 2 3

 - + - + -

Figure 4: Simplified decision tree found by Weka

Statistical Learning

 Here we are concerned with the exponential probability distribution, p(x) = e
-Θx

.

Here is a plot of this distribution on 0 < x < 100 with = 0.1:

Figure 5: Plot of the Exponential Distribution with = 0.1

Here is some code that generates random samples of the exponential distribution for a

given (provided as an argument on the command line):

import java.util.*;
import java.io.*;

public class Exponential
{
 // randExp(theta, n) returns n random samples of the
 // corresponding exponential distribution (given theta)
 public static double[] randExp(double theta, int n)
 {
 double[] res = new double[n];
 for (int i = 0; i < n; i++)
 {
 double random = Math.random();
 // x = -ln(random)/theta
 res[i] = -Math.log(random)/theta;
 }
 return res;
 }

 // args[0] = theta, args[1] = n
 // Outputs all n random samples to file "exp.txt"
 // Outputs mean and standard deviation of samples to
 // console.
 public static void main (String[] args) throws Exception
 {
 FileOutputStream out = new FileOutputStream("exp.txt");
 PrintStream p = new PrintStream (out);
 double theta = Double.parseDouble(args[0]);

 int n = Integer.parseInt(args[1]);

 double[] res = randExp (theta, n);
 for (int i = 0; i < res.length; i++)
 p.println (res[i]);

 // mean = (res[0] + ... + res[n-1])/n
 double mean = 0;
 for (int i = 0; i < res.length; i++)
 mean += res[i];
 mean = mean/n;

 // variance = (res[0]^2 + ... + res[n-1]^2)/n - mean^2
 // sd = sqrt(variance)
 double sd = 0;
 for (int i = 0; i < res.length; i++)
 sd += res[i]*res[i];
 sd = Math.sqrt ((sd/n) - (mean*mean));

 System.out.println ("n = " + n
 + "\nmean = " + mean
 + "\nstandard deviation = "
 + sd);
 }
}

The program takes in two arguments, and n, and produces n random samples of the

given exponential distribution and prints them to a file “exp.txt”. The mean and standard

deviation are then printed to the screen. Here is a test run:

Command Line:

A:\csc421>java -cp . Exponential 0.1 100

n = 100

mean = 9.621445996206914

standard deviation = 9.624689652210852

Note that the mean and the standard deviation are approximately equal and are close to

1/ = 10. Here is a plot of the samples generated by this test run:

Sample number

V
a
lu

e
 o

f
R

a
n
d
o
m

 S
a
m

p
le

100806040200

50

40

30

20

10

0

Scatter Plot of 100 Exponentially Generated Random Samples

I then ran the program for n = 1000 and n = 10,000 and stored the output. Then using the

output, I created the following histograms which show that as the number of samples

increase, the random sample distribution approaches the exponential (the blue curve):

Value of Random Sample

Fr
a
c
ti

o
n
 o

f
O

c
c
u
rr

e
n
c
e

100806040200

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Mean 10

N 100

Histogram of 100 Exponentially Generated Random Samples

Value of Random Sample

P
e
rc

e
n
t

100806040200

0.1

0.08

0.06

0.04

0.02

0

Mean 10

N 1000

Histogram of 1000 Exponentially Generated Random Samples

Value of Random Sample

Fr
a
c
ti

o
n
 o

f
O

c
c
u
rr

e
n
c
e

100806040200

0.1

0.08

0.06

0.04

0.02

0

Mean 10

N 10000

Histogram of 10,000 Exponentially Generated Random Samples

The following code uses the randExp function from the previous code to generate a

matrix whose rows are [x y l], where x and y are random samples from specific

exponential distributions and l is the class label (either 1 or 2). When l = 1, x comes from

an exponential distribution with mean 20 and y comes from an exponential distribution

with mean 15. When l = 2, x and y both come from an exponential distribution with

mean 30. In particular, this code makes a 3x100 matrix with 50 samples from each class

and stores it in a file called “trainset.txt”:

import java.util.*;
import java.io.*;

public class MachLearn
{
 /* makeTrainSet creates a 3x2n matrix where each row
 * is [x y L] where x comes from an exponential
 * distribution with mean 1/thetaLx, y comes from an
 * exponential distribution with mean 1/thetaLy, and
 * L is the class label. n samples are made from each
 * class.
 */
 public static double[][] makeTrainSet(double theta1x,
 double theta1y,
 double theta2x,
 double theta2y,
 int n)
 {
 double[][] res = new double[2*n][3];

 // Make class 1 samples
 double[] x = Exponential.randExp (theta1x, n);
 double[] y = Exponential.randExp (theta1y, n);
 for (int i = 0; i < n; i++)
 {
 res[i][0] = x[i];
 res[i][1] = y[i];
 res[i][2] = 1;
 }

 // Make class 2 samples
 x = Exponential.randExp (theta2x, n);
 y = Exponential.randExp (theta2y, n);
 for (int i = n; i < 2*n; i++)
 {
 res[i][0] = x[i-n];
 res[i][1] = y[i-n];
 res[i][2] = 2;
 }
 return res;
 }

 // Output a specific training set to file "trainset.txt"
 public static void main (String[] args) throws Exception
 {
 FileOutputStream out = new FileOutputStream("trainset.txt");
 PrintStream p = new PrintStream (out);

 double[][] trainSet
 = makeTrainSet(0.05, (double) 1.0/15,
 (double) 1.0/30, (double) 1.0/30,
 50);
 for (int i = 0; i < trainSet.length; i++)
 p.println (trainSet[i][0] + " " +
 trainSet[i][1] + " " +
 trainSet[i][2]);
 }
}

Here is a scatter plot using a training set produced by this code:

X

Y

140120100806040200

200

150

100

50

0

Class

1

2

Scatter Plot with 50 Samples From Each Class

Finally, the next bit of code attempts to classify a set of (x,y) points in two ways: The

first uses Baysian classification (making use of the true underlying exponential

distributions) by estimating the likelihood that the point is from class 1 (or class 2) and

then choosing the maximum of the two; the second uses Gaussian classification by

assuming that the underlying distributions are both multivariate Gaussian (with

independent coordinates) with means and standard deviations equal to the statistical

means and standard deviations of the training set, and then computes likelihood similar to

the first way. Here is the code:

import java.io.*;
import java.util.*;

public class Classifier
{
 public static void main (String[] args) throws Exception
 {
 int numErrors = 0; // tracks number of classifying errors
 double[][] trainset = new double[100][3];

 // Put samples in matrix
 Scanner s = new Scanner (new File ("trainset.txt"));
 for (int i = 0; i < 100; i++)
 for (int j = 0; j < 3; j++)
 trainset[i][j] = Double.parseDouble (s.next());

 // Classify samples according to known exponentials
 double thetax1 = 0.05;
 double thetay1 = (double) 1.0/15;
 double thetax2 = (double) 1.0/30;
 double thetay2 = thetax2;

 for (int i = 0; i < 100; i++)
 {
 // P(w|x) = aP(x|w)P(w)
 // a and P(w) are constant (since 50 samples from
 // each distribution), therefore just need to
 // compute P(x|w) to classify sample

 // Assuming independence
 // P((x,y) of class j) = P(x class j)P(y class j)
 // = thetaxj*e^(-thetaxj*x)*thetayj*e^(-thetayj*y)
 double x = trainset[i][0];
 double y = trainset[i][1];
 double class1prob = thetax1*thetay1*Math.exp(-thetax1*x-

thetay1*y);
 double class2prob = thetax2*thetay2*Math.exp(-thetax2*x-

thetay2*y);

 // We classify according to higher probability.
 // If actual class different from computed class, then

// get error
 if (class1prob > class2prob && trainset[i][2] != 1.0)
 numErrors++;
 if (class1prob < class2prob && trainset[i][2] != 2.0)
 numErrors++;
 }

 System.out.println ("Bayes Classification made " + numErrors + "

Errors out of 100");

 // Classify samples according to multivariate Gaussian

// distributions
 numErrors = 0;

 // Need to get statistical means and standard deviations
 // (assume independence of x and y coordinates)
 double meanx1 = 0;
 double meany1 = 0;
 double meanx2 = 0;
 double meany2 = 0;
 double sdx1 = 0;
 double sdy1 = 0;
 double sdx2 = 0;
 double sdy2 = 0;

 for (int i = 0; i < 100; i++)
 {
 if (trainset[i][2] == 1.0)
 {
 meanx1 += trainset[i][0];
 meany1 += trainset[i][1];
 sdx1 += trainset[i][0]*trainset[i][0];
 sdy1 += trainset[i][1]*trainset[i][1];
 }
 else
 {
 meanx2 += trainset[i][0];
 meany2 += trainset[i][1];
 sdx2 += trainset[i][0]*trainset[i][0];
 sdy2 += trainset[i][1]*trainset[i][1];
 }
 }
 meanx1 = meanx1/50;

 meanx2 = meanx2/50;
 meany1 = meany1/50;
 meany2 = meany2/50;
 // sd = sqrt(E(x^2) - E(x)^2) = sqrt(E(x^2) - mean^2)
 sdx1 = Math.sqrt(sdx1/50 - meanx1*meanx1);
 sdx2 = Math.sqrt(sdx2/50 - meanx2*meanx2);
 sdy1 = Math.sqrt(sdy1/50 - meany1*meany1);
 sdy2 = Math.sqrt(sdy2/50 - meany2*meany2);

 // Now classify samples according to these Gaussians
 for (int i = 0; i < 100; i++)
 {
 double x = trainset[i][0];
 double y = trainset[i][1];

 // P((x,y) of class j) = P(x class j)P(y class j)
 // P(x class j) = 1/(sdxj*sqrt(2pi))*e^(-(x-

// meanxj)^2/2sdxj^2)
 double class1prob = (1.0/(sdx1*Math.sqrt(2*Math.PI)))
 *(1.0/(sdy1*Math.sqrt(2*Math.PI)))
 Math.exp(-(x-meanx1)(x-

meanx1)/(2*sdx1*sdx1))
 Math.exp(-(y-meany1)(y-

meany1)/(2*sdy1*sdy1));

 double class2prob = (1.0/(sdx2*Math.sqrt(2*Math.PI)))
 *(1.0/(sdy2*Math.sqrt(2*Math.PI)))
 Math.exp(-(x-meanx2)(x-

meanx2)/(2*sdx2*sdx2))
 Math.exp(-(y-meany2)(y-

meany2)/(2*sdy2*sdy2));

 if (class1prob > class2prob && trainset[i][2] != 1.0)
 numErrors++;
 if (class1prob < class2prob && trainset[i][2] != 2.0)
 numErrors++;
 }

 System.out.println ("Gaussian Classification made " + numErrors +

" errors out of 100");
 }
}

This code was run on the training set shown in the scatter plot and yielded the following

results:

Command Line:

A:\csc421>java -cp . Classifier

Bayes Classification made 30 errors out of 100

Gaussian Classification made 37 errors out of 100

Note that the Gaussian classifier made more errors than the Bayes classifier. This makes

sense since the Gaussian is using a wrong distribution (normal and not exponential) to

classify the points by. A relatively high percentage of errors occurred because the two

classes are not drastically different from one another.

