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Probability Theory 
 

Suppose that we are given cipher texts which encode messages in such a way that 

each letter of the alphabet is mapped to a sequence of 3 letters so that the frequency 

counts of each letter in the cipher text are approximately equal.  Here is how the text can 

be broken: 

 

Since letter frequencies are approximately equal in the cipher text, directly counting the 

letter frequencies will do us no good.  However, it will do us some good to count the 

number of times a letter occurs given the previous two letters since sequences of 3 letters 

are used for the encryption.  Assuming that there are n letters in our alphabet, we can do 

this by setting up an n-by-n-by-n table and making a tally of when a letter occurs after the 

previous two letters.  For instance, if we find an “a” in our cipher text in which the 2 

letters immediately preceding it are “bc”, then we would tally this in the (b,c,a)-entry of 

our table.  In other words, we make the Markov assumption that a letter only depends on 

it’s previous two letters.  After completely examining all cipher texts, the entry with the 

highest tally is then the most common sequence.  Assuming that we know the frequencies 

of the “real” letters in the language, we could make a good guess that the most frequent 

letter in the alphabet is mapped to the most frequent sequence in the table, the second 

most frequent letter to the second most frequent sequence, and so on.  For instance, if the 

(r,s,t)-entry of the table has the highest tally, then we would guess that the most frequent 

letter in our language is mapped to the 3 letter sequence “rst”.  With a bit of 

experimenting, the code can be easily solved. 

 

 Suppose now that we are given cipher texts which encode messages as follows: 

For each letter of the alphabet that needs to be encoded, a 6-sided unbiased die is rolled 6 

times and the sum of the numbers rolled is noted.  Then a notebook is consulted which 

contains a table with substitution entries for each possible value of the sum.  This process 

can be modeled as a Hidden Markov Model as follows: 

 

• Let Lt be the t
th

 letter of the real message.  These are the state variables of the 

HMM which are hidden from us. 

• Let Et be the t
th

 letter of the cipher text which encodes the real message.  These 

are the evidence variables of the HMM which are directly observable. 

• I will make the first-order Markov assumption that any given letter in this 

language only depends on the previous letter; i.e. P(Lt | L0:t-1) = P(Lt | Lt-1). 

• The transition model is obtained from our knowledge of the real language of how 

frequently certain letters follow other letters, and give us P(Lt | Lt-1).  Therefore 

the transition model will be an n-by-n table (where n is the number of letters in 

the alphabet) where, for instance, if we know that the letter “t” is followed by the 

letter “h” 5% of the time in our language, then the P(Lt = h | Lt-1 = t) entry of our 

table will be 0.05. 



• The sensor model is obtained from the entries in the notebook used to encode the 

messages (assuming that we have access to this notebook) and give us the values 

of P(Et | Lt).  This is done by summing the probabilities of all the rolls for Lt that 

use Et to encode it.  For instance, if we are encoding the letter “a” and if (6,b) and 

(36,b) are the only 2 entries in the table for “a” in which it is encoded by “b” (i.e. 

all other rolls dictate “a” to be encoded by a letter other than “b”), then P(Et = b | 

Lt = a) = 1/6
6
 + 1/6

6
 = 2/6

6
 because the probability of rolling a sum of 6 (and 

similarly 36) is 1/6
6
. 

• A reasonable prior probability distribution P(L0) would be to simply use the 

frequencies of each real letter appearing in the language (which we assume we 

have sufficient knowledge of). 
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 Figure 1: Baysian network topology of our Hidden Markov Model 

 

Now to break the code, we want to perform the inference task of finding the most likely 

sequence of the letter variables L1, L2, L3, … , Lk that produced the sequence of encoded 

letters e1, e2, … , ek.  This can be done using the Viterbi algorithm as follows: 

 

• View the possible state sequences for Lt as paths through a graph. 

• For each t, calculate the message m1:t which gives the probability of the best 

sequence reaching each state at time t.  Also keep track of each state’s most likely 

predecessor. 

 

The probability of the best sequence m1:t can be computed recursively as follows: 

 

m1:t+1 = maxx1, … , xt P(x1, … , xt Xt+1 | e1:t+1)  

          =  P(et+1 | Xt+1) maxxt { P(Xt+1 | xt) maxx1, … , xt-1 P(x1, … , xt-1, xt | e1:t) } 

 

In other words, just select the most likely letter that comes next given the evidence and 

the most likely sequence up to this point.  To make this more concrete, here is an 

example of how this is done.  Suppose that our language contains only 2 letters “a” and 

“b” and that we know that the letter “a” is followed by another “a” 70% of the time and 

that the letter “b” is followed by another “b” 45% of the time.  Suppose also that there is 

a 40% chance that the letter “a” is encoded by the letter “a” and an 80% chance that the 

letter “b” is encoded by the letter “b” (governed by the likelihoods of the corresponding 



rolls in the notebook).  Assume that the frequencies of each letter in the language are 

approximately equal.  Then we have the following transition and sensory models: 

 

Table 1: Transition model 

Lt-1 P(Lt = a | Lt-1) P(Lt = b | Lt-1) 

a 0.7 0.3 

b 0.55 0.45 

 

Table 2: Sensor model 

Lt P(Et = a | Lt) P(Et = b | Lt) 

a 0.4 0.6 

b 0.2 0.8 

 

Suppose we want to try to decode the message “aba”.  Now given that the frequencies of 

each letter in the language are approximately equal, we have P(L0) = <P(L0 = a), P(L0 = 

b)> = <0.5, 0.5>.  Here are the computations: 

 

m1:1 = P(L1 | E1 = a)  

       =  P(E1 = a | L1) ( P(L1 | L0 = a)P(L0 = a) + P(L1 | L0 = b)P(L0 = b) ) 

       =  <0.4,0.2> (<0.7,0.3>0.5 + <0.55,0.45>0.5) =  <0.25,0.075> 

       = <0.7692,0.2308>. 

 

m1:2 = maxγ P(L1 = , L2 | E1 = a, E2 = b) 

       =  P(E2 = b | L2) maxγ { P(L2 | L1 = )P(L1 =  | E1 = a) } 

       =  <0.6,0.8> max { <0.7,0.3>0.7692, <0.55,0.45>0.2308 } 

       =  <0.6,0.8> max { <0.5384,0.2308>, <0.1269,0.1039> } 

       =  <0.3230, 0.1846> 

       = <0.6363,0.3637> (most likely predecessors for both states is L1 = a). 

 

m1:3 = maxγ
1,
γ

2 P(L1 = 1, L2 = 2, L3 | E1 = a, E2 = b, E3 = a) 

 =  P(E3 = a | L3) maxγ
2 {P(L3 | L2 = 2) maxγ

1 P(L1 = 1, L2 = 2 | E1 = a, E2 = b)} 

 =  <0.4,0.2> max { <0.7,0.3>0.6363, <0.55,0.45>0.3637 } 

 =  <0.4,0.2> max { <0.4454,0.1909>, <0.2000,0.1637> } 

 =  <0.1782,0.0382> 

 = <0.8235,0.1765> (most likely predecessors for both states is L2 = a). 

 

          E1 = a        E2 = b          E3 = a 

 

Lt = a         0.7692         0.6363         0.8325 

 

 
 

 

Lt = b         0.2308         0.3637         0.1765 

 

          m1:1           m1:2          m1:3 

Figure 2: Most likely sequence of our two letter alphabet example 



Therefore, following the bold arrows backwards from L3 = a, we see that the most likely 

sequence is “aaa” and is therefore the best answer for decoding the message. 

 

Learning and Decision Trees 
 

 I have chosen to base my decision tree on whether a board game will be fun or not 

given a set of attributes describing the game.  Here is a set of training data: 

 

Suggested Age 

Group 

Average Time 

to Play (in 

hours) 

Maximum 

Number of 

Players 

Type of Game Fun 

Adults 1 6 Carcassonne + 

Kids <1 4 Other - 

Adults 3 6 Other - 

Kids 2 2 Other + 

Adults 2 6 Settlers + 

Adults 3 6 Settlers + 

Kids 1 4 Other - 

Adults 2 6 Carcassonne + 

Adults 1 2 Carcassonne + 

Adults >3 6 Settlers - 

Adults >3 4 Other - 

Adults 2 2 Other - 

Kids <1 6 Other - 

Adults 2 4 Other - 

Adults 2 6 Carcassonne + 

Adults 2 6 Other + 

Kids 2 4 Other - 

Adults 2 4 Settlers + 

Adults >3 4 Settlers - 

Adults 2 6 Carcassonne + 

 

Here is the full trivial decision tree based on the training set above: 

 

 

 

 

 

 

 

 

 

 

 

 

 



Age 

 

    Kids       Adults 

 

   Time     Time 

 

  <1    1     2       1 2 3 >3 

 

         -     -    Players         +           Players            Game        - 

 

   2        4   2 4 6 Settlers Other 

 

       +   -       -        Game          +      +                     - 

 

                Settlers         Other 

 

             +        - 

 

Figure 3: Default decision tree based on the training data 

 

Now using the information-gain heuristic on the training data, we can learn a 

simpler decision tree as follows: 

 

First, we need to find the attribute that minimizes the remainder of information needed to 

classify a new example.  For each attribute A, we can separate the training data in sets Ei 

according to their values for A.  Then we have 

 

 Remainder (A) = ∑i (pi + ni)/(p + n) I( pi/(pi + ni), ni/(pi + ni)) 

 

where pi and ni are the number of positive and negative examples in Ei respectively, p and 

n are the total number of positive and negative examples in the entire training data, and  

 

I(a, b) = -a log2 a – b log2 b 

 

Here are the computations: 

 

 Remainder (Age) = 5/20 I(1/5, 4/5) + 15/20 I(9/15, 6/15) 

  = 0.25(-0.2 log2 0.2 – 0.8 log2 0.8) + 0.75(-9/15 log2 9/15 – 6/15 log2 6/15) 

   0.9087 

 

 Remainder (Time) = 2/20 I(0, 1) + 3/20 I(2/3, 1/3) + 10/20 I(7/10, 3/10) 

            + 2/20 I(1/2, 1/2) + 3/20 I(0, 1) 

          = 0 + 0.15(-2/3 log2 2/3 – 1/3 log2 1/3)  

         + 0.5(-0.7 log2 0.7 – 0.3 log2 0.3) + 0.1(-log2 0.5) + 0 

        0.6784 

 



Remainder (Players) = 3/20 I(2/3, 1/3) + 7/20 I(1/7, 6/7) + 10/20 I(7/10, 3/10) 

             0.7855 

 

Remainder (Type) = 5/20 I(1,0) + 5/20 I(3/5, 2/5) + 10/20 I(2/10, 8/10) 

         0.6037 

 

Since the attribute “Type” has the smallest remainder, it will become the root of our new 

decision tree.  Then for each value v that type takes on (Carcassonne, Settlers, and 

Other), we repeat the process using only the examples of the training data where  

Type = v and find the best remaining attribute. We continue in this fashion until the 

whole tree is complete. 

 

The training data was written as a Weka attribute file and then evaluated using the ID3 

classifier in Weka explorer to find a learned decision tree: 

 

In file “games.arff”: 

@relation Board_Games 

 

@attribute age {adults, kids} 

@attribute time {<1, 1, 2, 3, >3} 

@attribute players {2, 4, 6} 

@attribute type {carcassonne, settlers, other} 

@attribute fun {yes, no} 

 

@data 

adults,1,6,carcassonne,yes 

kids,<1,4,other,no 

adults,3,6,other,no 

kids,2,2,other,yes 

adults,2,6,settlers,yes 

adults,3,6,settlers,yes 

kids,1,4,other,no 

adults,2,6,carcassonne,yes 

adults,1,2,carcassonne,yes 

adults,>3,6,settlers,no 

adults,>3,4,other,no 

adults,2,2,other,no 

kids,<1,6,other,no 

adults,2,4,other,no 

adults,2,6,carcassonne,yes 

adults,2,6,other,yes 

kids,2,4,other,no 

adults,2,4,settlers,yes 

adults,>3,4,settlers,no 

adults,2,6,carcassonne,yes 

 



Weka explorer output using ID3 classifier: 

=== Run information === 

 

Scheme:       weka.classifiers.trees.Id3  

Relation:     Board_Games 

Instances:    20 

Attributes:   5 

              age 

              time 

              players 

              type 

              fun 

Test mode:    evaluate on training data 

 

=== Classifier model (full training set) === 

 

Id3 

 

 

type = carcassonne: yes 

type = settlers 

|  time = <1: null 

|  time = 1: null 

|  time = 2: yes 

|  time = 3: yes 

|  time = >3: no 

type = other 

|  players = 2 

|  |  age = adults: no 

|  |  age = kids: yes 

|  players = 4: no 

|  players = 6 

|  |  time = <1: no 

|  |  time = 1: null 

|  |  time = 2: yes 

|  |  time = 3: no 

|  |  time = >3: null 

 

Time taken to build model: 0 seconds 

 

=== Evaluation on training set === 

=== Summary === 

 

Correctly Classified Instances          20              100      % 

Incorrectly Classified Instances         0                0      % 

Kappa statistic                          1      



Mean absolute error                      0      

Root mean squared error                  0      

Relative absolute error                  0      % 

Root relative squared error              0      % 

Total Number of Instances               20      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  1         0          1         1         1        yes 

  1         0          1         1         1        no 

 

=== Confusion Matrix === 

 

  a  b   <-- classified as 

 10  0 |  a = yes 

  0 10 |  b = no 

 

Type 

 

   Carcassonne  Settlers      Other 

 

    +  Time     Players 

 

     2 3 >3    2       4          6 

 

           +  +     -         Age             -              Time 

 

              Adults      Kids        <1      2      3 

       

           -  +       -           +          - 

 

Figure 4: Simplified decision tree found by Weka 

 

Statistical Learning 
 

 Here we are concerned with the exponential probability distribution, p(x) = e
-Θx

.  

Here is a plot of this distribution on 0 < x < 100 with  = 0.1: 



 
Figure 5: Plot of the Exponential Distribution with  = 0.1 

 

Here is some code that generates random samples of the exponential distribution for a 

given  (provided as an argument on the command line): 
 
import java.util.*; 
import java.io.*; 
 
public class Exponential 
{ 
 // randExp(theta, n) returns n random samples of the 
 // corresponding exponential distribution (given theta) 
 public static double[] randExp(double theta, int n) 
 { 
  double[] res = new double[n]; 
  for (int i = 0; i < n; i++) 
  { 
   double random = Math.random(); 
   // x = -ln(random)/theta 
   res[i] = -Math.log(random)/theta; 
  } 
  return res; 
 } 
 
 // args[0] = theta, args[1] = n 
 // Outputs all n random samples to file "exp.txt" 
 // Outputs mean and standard deviation of samples to 
 // console. 
 public static void main (String[] args) throws Exception 
 { 
  FileOutputStream out = new FileOutputStream("exp.txt"); 
  PrintStream p = new PrintStream (out); 
  double theta = Double.parseDouble(args[0]); 



  int n = Integer.parseInt(args[1]); 
 
  double[] res = randExp (theta, n); 
  for (int i = 0; i < res.length; i++) 
   p.println (res[i]); 
 
  // mean = (res[0] + ... + res[n-1])/n 
  double mean = 0; 
  for (int i = 0; i < res.length; i++) 
   mean += res[i]; 
  mean = mean/n; 
 
  // variance = (res[0]^2 + ... + res[n-1]^2)/n - mean^2 
  // sd = sqrt(variance) 
  double sd = 0; 
  for (int i = 0; i < res.length; i++) 
   sd += res[i]*res[i]; 
  sd = Math.sqrt ((sd/n) - (mean*mean)); 
 
  System.out.println ("n = " + n 
       + "\nmean = " + mean 
       + "\nstandard deviation = " 
       + sd); 
 } 
} 

 

The program takes in two arguments,  and n, and produces n random samples of the 

given exponential distribution and prints them to a file “exp.txt”.  The mean and standard 

deviation are then printed to the screen.  Here is a test run: 

 

Command Line: 

A:\csc421>java -cp . Exponential 0.1 100 

n = 100 

mean = 9.621445996206914 

standard deviation = 9.624689652210852 

 

Note that the mean and the standard deviation are approximately equal and are close to  

1/  = 10.  Here is a plot of the samples generated by this test run: 
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I then ran the program for n = 1000 and n = 10,000 and stored the output.  Then using the 

output, I created the following histograms which show that as the number of samples 

increase, the random sample distribution approaches the exponential (the blue curve): 
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The following code uses the randExp function from the previous code to generate a 

matrix whose rows are [x y l], where x and y are random samples from specific 

exponential distributions and l is the class label (either 1 or 2).  When l = 1, x comes from 



an exponential distribution with mean 20 and y comes from an exponential distribution 

with mean 15.  When l = 2, x and y both come from an exponential distribution with 

mean 30.  In particular, this code makes a 3x100 matrix with 50 samples from each class 

and stores it in a file called “trainset.txt”: 

 
import java.util.*; 
import java.io.*; 
 
public class MachLearn 
{ 
 /* makeTrainSet creates a 3x2n matrix where each row 
  * is [x y L] where x comes from an exponential 
  * distribution with mean 1/thetaLx, y comes from an 
  * exponential distribution with mean 1/thetaLy, and 
  * L is the class label.  n samples are made from each 
  * class. 
  */ 
 public static double[][] makeTrainSet(double theta1x, 
       double theta1y, 
       double theta2x, 
       double theta2y, 
       int n) 
 { 
  double[][] res = new double[2*n][3]; 
 
  // Make class 1 samples 
  double[] x = Exponential.randExp (theta1x, n); 
  double[] y = Exponential.randExp (theta1y, n); 
  for (int i = 0; i < n; i++) 
  { 
   res[i][0] = x[i]; 
   res[i][1] = y[i]; 
   res[i][2] = 1; 
  } 
 
  // Make class 2 samples 
  x = Exponential.randExp (theta2x, n); 
  y = Exponential.randExp (theta2y, n); 
  for (int i = n; i < 2*n; i++) 
  { 
   res[i][0] = x[i-n]; 
   res[i][1] = y[i-n]; 
   res[i][2] = 2; 
  } 
  return res; 
 } 
 
 // Output a specific training set to file "trainset.txt" 
 public static void main (String[] args) throws Exception 
 { 
  FileOutputStream out = new FileOutputStream("trainset.txt"); 
  PrintStream p = new PrintStream (out); 
 
  double[][] trainSet 
    = makeTrainSet(0.05, (double) 1.0/15, 
            (double) 1.0/30, (double) 1.0/30, 
            50); 
  for (int i = 0; i < trainSet.length; i++) 
   p.println (trainSet[i][0] + " " + 
        trainSet[i][1] + " " + 
        trainSet[i][2]); 
 } 
} 

 

Here is a scatter plot using a training set produced by this code: 
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Finally, the next bit of code attempts to classify a set of (x,y) points in two ways: The 

first uses Baysian classification (making use of the true underlying exponential 

distributions) by estimating the likelihood that the point is from class 1 (or class 2) and 

then choosing the maximum of the two; the second uses Gaussian classification by 

assuming that the underlying distributions are both multivariate Gaussian (with 

independent coordinates) with means and standard deviations equal to the statistical 

means and standard deviations of the training set, and then computes likelihood similar to 

the first way.  Here is the code: 

 
import java.io.*; 
import java.util.*; 
 
public class Classifier 
{ 
 public static void main (String[] args) throws Exception 
 { 
  int numErrors = 0; // tracks number of classifying errors 
  double[][] trainset = new double[100][3]; 
 
  // Put samples in matrix 
  Scanner s = new Scanner (new File ("trainset.txt")); 
  for (int i = 0; i < 100; i++) 
   for (int j = 0; j < 3; j++) 
    trainset[i][j] = Double.parseDouble (s.next()); 
 
  // Classify samples according to known exponentials 
  double thetax1 = 0.05; 
  double thetay1 = (double) 1.0/15; 
  double thetax2 = (double) 1.0/30; 
  double thetay2 = thetax2; 



 
  for (int i = 0; i < 100; i++) 
  { 
   // P(w|x) = aP(x|w)P(w) 
   // a and P(w) are constant (since 50 samples from 
   // each distribution), therefore just need to 
   // compute P(x|w) to classify sample 
 
   // Assuming independence 
   // P((x,y) of class j) = P(x class j)P(y class j) 
   // = thetaxj*e^(-thetaxj*x)*thetayj*e^(-thetayj*y) 
   double x = trainset[i][0]; 
   double y = trainset[i][1]; 
   double class1prob = thetax1*thetay1*Math.exp(-thetax1*x- 

thetay1*y); 
   double class2prob = thetax2*thetay2*Math.exp(-thetax2*x- 

thetay2*y); 
 
   // We classify according to higher probability. 
   // If actual class different from computed class, then  

// get error 
   if (class1prob > class2prob && trainset[i][2] != 1.0) 
    numErrors++; 
   if (class1prob < class2prob && trainset[i][2] != 2.0) 
    numErrors++; 
  } 
 
  System.out.println ("Bayes Classification made " + numErrors + "  

Errors out of 100"); 
 
  // Classify samples according to multivariate Gaussian  

// distributions 
  numErrors = 0; 
 
  // Need to get statistical means and standard deviations 
  // (assume independence of x and y coordinates) 
  double meanx1 = 0; 
  double meany1 = 0; 
  double meanx2 = 0; 
  double meany2 = 0; 
  double sdx1 = 0; 
  double sdy1 = 0; 
  double sdx2 = 0; 
  double sdy2 = 0; 
 
  for (int i = 0; i < 100; i++) 
  { 
   if (trainset[i][2] == 1.0) 
   { 
    meanx1 += trainset[i][0]; 
    meany1 += trainset[i][1]; 
    sdx1 += trainset[i][0]*trainset[i][0]; 
    sdy1 += trainset[i][1]*trainset[i][1]; 
   } 
   else 
   { 
    meanx2 += trainset[i][0]; 
    meany2 += trainset[i][1]; 
    sdx2 += trainset[i][0]*trainset[i][0]; 
    sdy2 += trainset[i][1]*trainset[i][1]; 
   } 
  } 
  meanx1 = meanx1/50; 



  meanx2 = meanx2/50; 
  meany1 = meany1/50; 
  meany2 = meany2/50; 
  // sd = sqrt(E(x^2) - E(x)^2) = sqrt(E(x^2) - mean^2) 
  sdx1 = Math.sqrt(sdx1/50 - meanx1*meanx1); 
  sdx2 = Math.sqrt(sdx2/50 - meanx2*meanx2); 
  sdy1 = Math.sqrt(sdy1/50 - meany1*meany1); 
  sdy2 = Math.sqrt(sdy2/50 - meany2*meany2); 
 
  // Now classify samples according to these Gaussians 
  for (int i = 0; i < 100; i++) 
  { 
   double x = trainset[i][0]; 
   double y = trainset[i][1]; 
 
   // P((x,y) of class j) = P(x class j)P(y class j) 
   // P(x class j) = 1/(sdxj*sqrt(2pi))*e^(-(x- 

//      meanxj)^2/2sdxj^2) 
   double class1prob = (1.0/(sdx1*Math.sqrt(2*Math.PI))) 
      *(1.0/(sdy1*Math.sqrt(2*Math.PI))) 
      *Math.exp(-(x-meanx1)*(x- 

meanx1)/(2*sdx1*sdx1)) 
      *Math.exp(-(y-meany1)*(y- 

meany1)/(2*sdy1*sdy1)); 
 
   double class2prob = (1.0/(sdx2*Math.sqrt(2*Math.PI))) 
      *(1.0/(sdy2*Math.sqrt(2*Math.PI))) 
      *Math.exp(-(x-meanx2)*(x- 

meanx2)/(2*sdx2*sdx2)) 
      *Math.exp(-(y-meany2)*(y- 

meany2)/(2*sdy2*sdy2)); 
 
   if (class1prob > class2prob && trainset[i][2] != 1.0) 
    numErrors++; 
   if (class1prob < class2prob && trainset[i][2] != 2.0) 
    numErrors++; 
  } 
 
  System.out.println ("Gaussian Classification made " + numErrors +  

" errors out of 100"); 
 } 
} 

 

This code was run on the training set shown in the scatter plot and yielded the following 

results: 

Command Line: 

A:\csc421>java -cp . Classifier 

Bayes Classification made 30 errors out of 100 

Gaussian Classification made 37 errors out of 100 

 

Note that the Gaussian classifier made more errors than the Bayes classifier.  This makes 

sense since the Gaussian is using a wrong distribution (normal and not exponential) to 

classify the points by.  A relatively high percentage of errors occurred because the two 

classes are not drastically different from one another. 


