
CSc 421 Assignment 3

Neil Burroughs

University of Victoria

British Columbia, Canada

inb@uvic.ca

April 20, 2006

1 Probabilty Theory

As a matter of completeness I will outline the probabilty of winning for this problem. From the table we can
see that the player has three possible first choices, two of which are goats. The host must choose a goat. If
the players first choice is a goat then switches the player will always win. Since there are two doors with goats
behind them the player has a probability of winning of P (W |S) = 2

3
.

Scenario First Choice Host Choice Switch Choice Result
1 Car Goat x Goat y Lose
2 Goat 1 Goat 2 Car Win
3 Goat 2 Goat 1 Car Win

1.1 Variation I

Given that the player won a car, what is the probability that they switched doors where the decision to switch
doors was decided by the toss of a fair coin?

Note that P (SW) is the prob. of switching, P (DS) is the prob. that the player didn’t switch, and P (W) is
the probability that the player won a car.

We know that P (SW) = P (DS) = 0.5 because a fair coin toss decides. Also the probability of winning
given that the player switches is P (W |SW) = 2

3
and the probability of winning if the player didn’t switch is

P (W |DS) = 1 − P (W |SW) = 1

3
. From this we can calculate the probability that the player switched doors

given thay they won P (SW |W) using Bayes Theorem:

P (SW |W) =
P (W |SW)P (SW)

P (W |SW)P (SW) + P (W |DS)P (DS)

=
2

3

1

2

2

3

1

2
+ 1

3

1

2

=
1

3

1

3
+ 1

6

=
1

3

1

2

=
2

3

1.2 Variation II

Over two games, what is the probability that the player wins two goats given that on the first game the player
didn’t switch and on the second game the player did switch? Once again the decision to switch is based on a
fair coin toss.

We note that P (W |DS) = 1

3
but that winning a goat is not winning as such so P (G|DS) = 1−P (W |DS) = 2

3
.

Also note that the P (W |SW) = 2

3
and its inverse P (W |SW) = 1−P (G|SW) = 1

3
. Since these are two different

events we can calculate the result as:

P (G|DS)P (G|SW) =
2

3

1

3
=

2

9

The probability of winning two cars under the same conditions as the previous problem is calculated in the
same way:

P (W |DS)P (W |SW) =
1

3

2

3
=

2

9

2 Email categorization

2.1 Constructing the model

The training data should be divided into the predefined categories. For a given category we read the group of
training documents and count the occurrences of each unique word. For example, the word ’java’ may appear
15 times in a the training data for the Computer Science Friends category while the word ’enlarged’ may appear
13 times in the Spam category. These word counts are divided by the number of words read for the particular
category to generate a probability of occurrence for each particular word. For example, the Spam category may
have had 1000 words total so the word ’enlargement’ would have a probability of P (enlargement|Spam) = 0.013.
These probabilties are stored in a table along with their associated word for each category. In this way, training
is performed for each category.

2.2 Categorizing a new document

We are provided with a document and want to know what category it belongs in. The first step is to scan the
document and count the unique words. For each word and its count, divide the word by the count to get its
probability in the email documnet. For example, word=Viagra, occurrences=3, word count=45:

P (word = V iagra|Email) =
3

45

Next we calculate the probability that the email is in a given email category. For each unique word in the
email we multiply its probability in the email by the probability in the category. For k words in the email we
sum each of the k products, or:

P (Email|Category) =
∑

i=0..k

P (wi ∈ email)P (wi ∈ category)

We can calculate the probability of the email being in each of the categories available. Each of these values
is compared and the greatest probability value indicates which category the email belongs in.

2.3 Implementing the better email categorizer

The email categorizer was implemented in Python. Training data was created from my own personal email
which proved to be a problem since I receive very little spam. Instead I consider jokes sent by friends as spam,
other email from friends as friendly, and colloquium email from the CSc department as what it is. This training
data most certainly affected performance.

There is roughly the same amount of words in both the spam and friends categories with much less in the
CSc Colloquium category. Results are less than perfect with 50 percent of spam being caught, but all friends
emails categorized correctly.

2.4 Practical issues solved/unsolved

Some words are not useful in categorizing documents. Words such as ’and’ and ’the’ are not indicative of
anything in particular; at least not to any significant degree. To solve this problem we can build a list of
words deemed not significant and use that list to filter them out of the statistics. However this is not a simple
task. Words may be used in different contexts so that a word deemed insignificant in one category of email
may be very significant in another. So what is needed is a list of insignificant words for each category. This
implementation though only uses a single list for all categories due to the expected time a full analysis of each
category would require.

When dealing with email it must be determined which portion of the email is important for statistical
analysis. An email is divided into a header and a body. The header may hold incriminating information such
as location of sender. Email coming from countries in Eastern Europe or parts of Africa may be more likely to

be spam as opposed to email coming from Canada. This is especially true if you don’t know anyone in Africa.
This implementation only considers words located in the body of the message.

Generating statistics in the body of the message has some problems. Not every email contains nice paragraphs
of text. Instead there is much punctuation, there is even large portions of HTML, and still others have words
cut off during wrapping/encoding of messages by the sender. This implementation eliminates some punctuation
but leaves in other pieces. For example, commas are replaced by spaces, but colons are left since some of the
example email was found to have terms like From: and Where: as fields. These could be significant indicators.
Parsing HTML is beyond the scope of this assignment since it is anything but an easy task. The training data
and test emails were filtered of HTML before testing. Word splitting is tricky. Some words are cut with an
’=’ sign added. It is a simple matter of rejoining those words. In clean cuts with no indication there is little
possibility of recovering the words without some analysis such as comparing join segments to the database while
looking for a maximum score. ie if the score of the two separated words is less when looking up in the database
than it is after joining them then join. This is a problem at the very beginning when no words are in the
database.

It appears that spam email is now including paragraphs of words that are very likely to appear in normal
email so as to increase the score of the spam away from categorizing it as spam. This is very devious and it
indicates that spammers are very unethical people. I am not sure how to correct this problem but it may be
possible to split a single email into parts and classify those sections. If certain portions are very likely to be
spam then the entire email could be spam.

3 Baysian Networks

The network and probability tables are included. Probability estimates were made by assigning values through
reasonable guesses. Since this network is closely related to my personal experience (though I can’t remember
the last time I had lox and eggs for breakfast) real values could be found simply by documenting situations and
choices made over a given period of time. This period of time would have to be long in order to get values for
things like Hot Water (the hot water tank rarely breaks).

4 Exact Inference in Baysian Networks

4.1 Query 1

P (Energy = avg|ToBed = early,Dreams = nightmare,MidnightSnack = pizza, AlarmV olume =
soft,Rested,Water = cold, Shower,Breakfast = cereal, Coffee)

Known Probabilities:
P1(ToBed = early) = 0.3
P2(MidnightSnack = pizza|ToBed = early) = 0.05
P3(Dreams = nightmare|MidnightSnack = pizza) = 0.4
P4(AlarmV olume = soft) = 0.6
P5(Water = cold) = 0.1
P6(Breakfast = cereal) = 0.8

Conditional Probabilities:
PC(Coffee) = 0.8
P

C
(¬Coffee) = 0.2

PS(Shower|Water = cold) = 0.2
P

S
(¬Shower|Water = cold) = 0.8

PR(Rested|ToBed = early,Dreams = nightmare,AlarmV olume = soft) = 0.2
P

R
(¬Rested|ToBed = early,Dreams = nightmare,AlarmV olume = soft) = 0.8

PEsc(Energy = avg|Shower = true, Coffee = true,Breakfast = cereal) = 0.35
PEsc(Energy = avg|Shower = true, Coffee = false,Breakfast = cereal) = 0.45
PEsc(Energy = avg|Shower = false, Coffee = true,Breakfast = cereal) = 0.4
PEsc(Energy = avg|Shower = false, Coffee = false,Breakfast = cereal) = 0.5

P = P1P2P3P4P5P6PCPSPRPEsc + P1P2P3P4P5P6PCPSP
R
PEsc

+ P1P2P3P4P5P6PCP
S
PRPEsc + P1P2P3P4P5P6PCP

S
P

R
PEsc

+ P1P2P3P4P5P6PC
PSPRPEsc + P1P2P3P4P5P6PC

PSP
R
PEsc

+ P1P2P3P4P5P6PC
P

S
PRPEsc + P1P2P3P4P5P6PC

P
S
P

R
PEsc

= 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.8 × 0.2 × 0.2 × 0.35

+ 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.8 × 0.2 × 0.8 × 0.35

+ 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.8 × 0.8 × 0.2 × 0.45

+ 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.8 × 0.8 × 0.8 × 0.45

+ 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.2 × 0.2 × 0.2 × 0.4

+ 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.2 × 0.2 × 0.8 × 0.4

+ 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.2 × 0.8 × 0.2 × 0.5

+ 0.3 × 0.05 × 0.4 × 0.6 × 0.1 × 0.8 × 0.2 × 0.8 × 0.8 × 0.5

= 0.0000032 + 0.0000129 + 0.0000166 + 0.0000664 + 0.0000009 + 0.0000037 + 0.0000046 + 0.0000184

= 0.0001267

4.2 Query 2

P (Energy = avg|ToBed = early,MidnightSnack = none,Dreams,AlarmV olume = soft, Rested,Water =
hot, Shower = true,Breakfast = cereal, Coffee = true)

Known Probabilities:
P1(ToBed = early) = 0.3
P2(MidnightSnack = none|ToBed = early) = 0.8
P3(AlarmV olume = soft) = 0.6
P4(Water = hot) = 0.8
P5(Shower = true|Water = hot) = 0.95
P6(Breakfast = cereal) = 0.8
P7(Coffee) = 0.8
P8(Energy = avg|Shower = true, Coffee = true,Breakfast = cereal) = 0.35

Conditional Probabilities:
PD=n(Dreams = nightmare|MidnightSnack = none) = 0.2
PD=s(Dreams = sweet|MidnightSnack = none) = 0.5
PD=w(Dreams = weird|MidnightSnack = none) = 0.3
PRn(Rested|ToBed = early,Dreams = nightmare,AlarmV olume = soft) = 0.2
P

Rn
(Rested|ToBed = early,Dreams = nightmare,AlarmV olume = soft) = 0.8

PRs(Rested|ToBed = early,Dreams = sweet, AlarmV olume = soft) = 0.85
P

Rs
(Rested|ToBed = early,Dreams = sweet, AlarmV olume = soft) = 0.15

PRw(Rested|ToBed = early,Dreams = weird,AlarmV olume = soft) = 0.5
P

Rw
(Rested|ToBed = early,Dreams = weird,AlarmV olume = soft) = 0.5

P = P1P2P3P4P5P6P7P8PD=nPRn + P1P2P3P4P5P6P7P8PD=nP
Rn

+ P1P2P3P4P5P6P7P8PD=sPRs + P1P2P3P4P5P6P7P8PD=sPRn

+ P1P2P3P4P5P6P7P8PD=wPRw + P1P2P3P4P5P6P7P8PD=wP
Rn

= 0.3 × 0.8 × 0.6 × 0.8 × 0.95 × 0.8 × 0.8 × 0.35 × 0.2 × 0.2

+ 0.3 × 0.8 × 0.6 × 0.8 × 0.95 × 0.8 × 0.8 × 0.35 × 0.2 × 0.8

+ 0.3 × 0.8 × 0.6 × 0.8 × 0.95 × 0.8 × 0.8 × 0.35 × 0.5 × 0.85

+ 0.3 × 0.8 × 0.6 × 0.8 × 0.95 × 0.8 × 0.8 × 0.35 × 0.5 × 0.15

+ 0.3 × 0.8 × 0.6 × 0.8 × 0.95 × 0.8 × 0.8 × 0.35 × 0.3 × 0.5

+ 0.3 × 0.8 × 0.6 × 0.8 × 0.95 × 0.8 × 0.8 × 0.35 × 0.3 × 0.5

= 0.0009806 + 0.0392235 + 0.0104187 + 0.0018386 + 0.0036772 + 0.0036772

= 0.0598158

4.3 Query 3

P (Energy = avg|ToBed = usual,MidnightSnack = icecream,Dreams = sweet, AlarmV olume = soft,

Rested = true,Water = hot, Shower = true,Breakfast, Coffee)

Known Probabilities:
P1(ToBed = usual) = 0.6
P2(MidnightSnack = icecream|ToBed = usual) = 0.1
P3(Dreams = sweet|MidnightSnack = icecream) = 0.5
P4(AlarmV olume = soft) = 0.6
P5(Water = hot) = 0.8
P6(Shower = true|Water = hot) = 0.95
P7(Rested = true|Dreams = sweet, ToBed = usual, AlarmV olume = soft) = 0.75

Conditional Probabilities:
PB=c(Breakfast = cereal) = 0.8
PB=l(Breakfast = loxandeggs) = 0.1
PB=y(Breakfast = yogourt) = 0.4
PC(Coffee = true) = 0.8 P

C
(Coffee = true) = 0.2 PEc,b=c(Energy = avg|Shower = true, Coffee =

true,Breakfast = cereal) = 0.35
PEc,b=l(Energy = avg|Shower = true, Coffee = true,Breakfast = loxandeggs) = 0.45
PEc,b=y(Energy = avg|Shower = true, Coffee = true,Breakfast = yogourt) = 0.45
PEc,b=c(Energy = avg|Shower = true, Coffee = false,Breakfast = cereal) = 0.35
PEc,b=l(Energy = avg|Shower = true, Coffee = false,Breakfast = loxandeggs) = 0.45
PEc,b=y(Energy = avg|Shower = true, Coffee = false,Breakfast = yogourt) = 0.45

Variables eliminated:
P1−7 = P1P2P3P4P5P6P7 = 0.01026 P1−7,B=c = P1−7PB=c = 0.008208 P1−7,B=c = P1−7PB=l = 0.001026
P1−7,B=c = P1−7PB=y = 0.004104

P = P1−7PB=cPCPEc,b=c + P1−7PB=cPC
PEc,b=c

+ P1−7PB=lPCPEc,b=l + P1−7PB=lPC
PEc,b=l

+ P1−7PB=yPCPEc,b=y + P1−7PB=yP
C

PEc,b=y

= P1−7,B=cPCPEc,b=c + P1−7,B=cPC
PEc,b=c

+ P1−7,B=lPCPEc,b=l + P1−7,B=lPC
PEc,b=l

+ P1−7,B=yPCPEc,b=y + P1−7,B=yP
C

PEc,b=y

= 0.008208 × 0.8 × 0.35 + 0.008208 × 0.2 × 0.35

+ 0.001026 × 0.8 × 0.45 + 0.001026 × 0.2 × 0.45

+ 0.004104 × 0.8 × 0.45 + 0.004104 × 0.2 × 0.45

= 0.0022982 + 0.0005746 + 0.0003694 + 0.0000923 + 0.0014774 + 0.0003694

= 0.0051813

4.4 Query 4

P (Energy = avg|ToBed = usual,MidnightSnack = none,Dreams = sweet, AlarmV olume, Rested =
true,Water = cold, Shower = true,Breakfast = LoxandEggs, Coffee)

Known Probabilities:
P1(ToBed = usual) = 0.6
P2(MidnightSnack = none|ToBed = usual) = 0.7
P3(Dreams = sweet|MidnightSnack = none) = 0.5
P4(Water = cold) = 0.1
P5(Shower = true|Water = cold) = 0.2
P6(Breakfast = loxandeggs) = 0.1

Conditional Probabilities:
PR,A=s(Rested = true|Dreams = sweet, ToBed = usual, AlarmV olume = soft) = 0.75 PR,A=l(Rested =
true|Dreams = sweet, ToBed = usual, AlarmV olume = loud) = 0.74 PC(Coffee = true) = 0.8 P

C
(Coffee =

false) = 0.2 PEc(Energy = avg|Shower = true, Coffee = true,Breakfast = loxandeggs) = 0.45
PEc(Energy = avg|Shower = true, Coffee = false,Breakfast = loxandeggs) = 0.35

Variables eliminated:
P1−6 = P1P2P3P4P5P6 = 0.00042 P1−6,R,A=s = P1−6PR,A=s = 0.000315 P1−6,R,A=l = P1−6PR,A=l = 0.0003108
PC,Ec = PCPEc = 0.36 P

C,Ec
= P

C
PEc = 0.09 PC,Ec = PCPEc = 0.28 P

C,Ec
= P

C
PEc = 0.07

P = P1−6PR,A=sPCPEc + P1−6PR,A=sPCPEc

+ P1−6PR,A=sPC
PEc + P1−6PR,A=sPC

PEc

+ P1−6PR,A=lPCPEc + P1−6PR,A=lPCPEc

+ P1−6PR,A=lPC
PEc + P1−6PR,A=lPC

PEc

= P1−6,R,A=sPCPEc + P1−6,R,A=sPCPEc

+ P1−6,R,A=sPC
PEc + P1−6,R,A=sPC

PEc

+ P1−6,R,A=lPCPEc + P1−6,R,A=lPCPEc

+ P1−6,R,A=lPC
PEc + P1−6,R,A=lPC

PEc

= P1−6,R,A=sPC,Ec + P1−6,R,A=sPC,Ec

+ P1−6,R,A=sPC,Ec
+ P1−6,R,A=sPC,Ec

+ P1−6,R,A=lPC,Ec + P1−6,R,A=lPC,Ec

+ P1−6,R,A=lPC,Ec
+ P1−6,R,A=lPC,Ec

= 0.000315 × 0.36 + 0.000315 × 0.28

+ 0.000315 × 0.09 + 0.000315 × 0.07

+ 0.0003108 × 0.36 + 0.0003108 × 0.28

= 0.0003108 × 0.09 + 0.0003108 × 0.07

= 0.0005006

5 Section 6

The code for calculating π can be seen in figure 1. One instance of results output by this code is in table 1.

darts 10 100 1000 10000

π 3.2 3.24 3.12 3.1424

Table 1: Results on calculating π for a number of random darts

To calculate the cummulative distribution of X ∈ x1, . . . , xj we sum the probabilities P (x1) + . . . + P (xj)
for each j ∈ 1 . . . k. To calculate in O(k) time we add the current sample to the sum of all previous samples

or xj +
∑i=1

j−1
xi. This is made possible by keeping the current sum handy at each step of the distribution

calculation.

import random

def go(num points):

total=num points

inside=0

while num points>0:

x = random.random()

y = random.random()

if (x*x+y*y) <= 1:

inside = inside + 1

num points = num points - 1

print ’inside:’ , inside , ’ inside/4:’,4*(float(inside)/float(total))

Figure 1: Python function for estimating π

To generate a single sample P (X = xi) from the cumulative distribution simply take the cumulative distri-
bution probability at xi and subtract the probability at xi−1 where i is not the first position. If i = 1 or is the
first position then it is simply the probability at x1.

The cumulative distribution function C(x) is can be defined as C(xi) =
∑i

j=1
P (xj). Then the probability

P (X = xi) = C(xi) − C(xi−1) can be calculated in less than O(k) time provided we can maintain a table with
the cummulative distribution sums at each step rather than calculating the entire distribution for each step.

Therefore to generate N samples of X where N >> k we simply use the cummulative distribution table as
explained above and do one subtraction to calculate each sample in constant time.

