CSC330 Summer 2006
PROGRAMMING

LANGUAGES

George Tzanetakis
gtzan@cs.uvic.ca
http://www.cs.uvic.ca/~gtzan

© George Tzanetakis

Course Administration

> Reading UVIC emails is required

> Emphasis on work not inspiration
> Pace yourself (work 2-3 hours/lecture)

> Attendance is critical and lectures are
incremental

> Grading, copying

> QOral interviews for programming assignments

i, Open book policy for midterm/final

© George Tzanetakis

A topic for discussion

In CACM The next 1000 yrs, Vol 44 (3) with topics such as
Digital Immortality, Virtual Beings, Cyborgs etc.

“Computing's central challenge: “How not to make a mess of it”
has not been met. On the contrary, most of our systems are
much more complicated than can be considered healthy, and are
too messy and chaotic to be used in comfort and confidence. The
average customer of the computing industry has been served so
poorly that he expects his system to crash all the time, and we
witness a massive worlwide distribution of bug-ridden software
for which we should be deeply ashamed.” - E. Dijkstra

© George Tzanetakis

Programming Languages Poll

> “The only way you can learn a programming
language is by writing programs in it” -
B. Kernighan & D. Ritchie

> How many PLs have you programmed in ?
> How many PLs do you know ?

> What's the most difficult program you have
written ¢

© George Tzanetakis

What is a Programming Language ?

> Is English a PL ?

> Is Adobe photoshop a PL?
> Is Excel a PL?

> Is Matlab a PL ?

© George Tzanetakis

What is a programming language ?

A programming language is a system of notation for describing
computations. A useful programming language must therefore
be suited for both description (i.e., for human writers and
readers of programs) and for computation (i.e., for efficient
implementation on computers). But human beings and
computers are so different that it is difficult to find notational
devices that are well suited to the capabilities of both. -

R. Tennant (Principles of Programming Languages,
Prentice Hall, 1981)

One doesn't really understand the bones of a language
until one has tried to design one. -

= J.R.R Tolkien when asked why spend years designing
o "High Elvish":

© George Tzanetakis

What are the three most
important ideas in
programming ¢

© George Tzanetakis

What are the three most

important ideas in programming ?
> Naming Abstractions

> pi:: Float

> pi=3.14159
> Functional Abstractions

> circleArea :: Float -> Float

> circleArear=pi*rA 2

> Data Abstractions

& [1,2,3] is a list of integers

2 listSum :: [Float] -> Float
iE 3 © George Tzanetakis

History of PLs

The grandparents:
Fortan 50s
Cobol 50s
Algol 60s
Lisp 50s

1965

1970

1975 -

1980 4

1985 7

1990

1945 4

Fortran 1

F0111!a|1 Il

Fortran TV

Fortran 77

Y
Fortran 90

Cobol

Turing

Y

Visual Basic

HFF

Fortran 95

Cedar

Algol 58
Lisp
Algol 60
Sir]ula
BCPL Simula 67
Algol 68
Scheme
-_-_-_-_‘_'_'_“‘—-—.
ML
Smallialk 80
Y
C++ Commaon Lisp
Miranda
.. l
Oberon ¥ CLOS Haskell
Modula 3 ANSIC
Eiffel
Y
Ada 95 L
Java

© George Tzanetakis

FORTRAN | %T
(Formula TRANslator) ®T

> John Backus & team in 1954

> Goals: scientific computing, etficiency

> Important concepts
> High-level programming language (X=Y*Z+Q)
> Translator (what we call compiler)
> Machine-independent programs

> Floating point numbers “We did not regard language design
as a difficult problem, merely a simple

prelude to the real problem: designing
a compiler that could produce
efficient programs.” J. Backus

© George Tzanetakis

Cobol

(COmmon Business Oriented Language) |

> Grace Hopper 1950s designed FlowMatic
which led to Cobol in 1959

> Business applications

> Record structure

> Separation of data structures from execution
> Emphasis on readability but very WORDY

- Versatile formating

% ‘I had a running compiler and no one would touch it.
| They said computers could only do arithmetic”

© George Tzanetakis

ALGOL

> Designed by an international committee to
be a universal language

> Nested structure of environments & control

> E-BNF (Backus Naur Form) syntax
specification

> Never really used except for publishing
algorithms

gz, > Huge influences on future languages

© George Tzanetakis

Algol 68 Minority Report

We regard the current Report on Algorithmic Language ALGOL 68

as the fruit of an effort to apply a methodology for language definition

to a newly designed programming language. We regard the effort as

an experiment and professional honesty compels us to state that in

our considered opinion we judge the experiment to be a failure in

both respects. The failure of the description methodology is most

readily demonstrated by the sheer size of the Report in which, as stated
on many occasions by the authors, "every word and every symbol matters"
and by the extreme difficulty of achieving correctness.

(Dijkstra, Hoare and others)

No proper program contains an indication which as an
operator-applied occurrence identifies an
operator-defining occurrence which as an indication
applied occurrence identifies an indication-defining
occurrence different from the one identified by the given

indication as an indication-applied occurrence. -
ALGOL 68 Report

© George Tzanetakis

Partial & total functions

) / Programs are

partial functions:
1) partial ops
(division by zero)
2) non-term
iteration

g(x)

X
Total function: f(x) has a value for every x
Partial function: g(x) doesn't have a value for every x

Graph of f: = {<x,y> |y = f(x)}

f2
P
A
15

_

s set of ordered pairs

© George Tzanetakis

Computability

> Function is computable if some program P
computes it: For any input x, the program P
halts with output {(x)

> Terminology

> Partial recursive functions = partial functions
(int -> int) that are computable

© George Tzanetakis

Halting problem

> Decide whether program halts on input
> Given program P and input x to P:
Halt(P,x) = { yes if P(x) halts, no otherwise}

> Clarifications:

> Assume program P requires one string input
> Write P(x) for output of P when run with input x
> Program P is string input to Halt

=7, FACT: there is no program for Halt

© George Tzanetakis

Unsolvability of halting problem

> Suppose P solves variant of halting problem:
on input Q P(Q) = {yes it Q halts, no otherwise}

> Build program D such that:
D(Q) = {run forever if Q(Q) halts, otherwise halt}

> D(D)
> If D(D) halts, then D(D) runs forever

7 If D(D) runs forever, then D(D) halts
% CONTRADICTION

© George Tzanetakis

Main points about computability

> Some functions are computable, some are
not

> Halting problem
> Programming language implementation

> Can report error if program is undefined due to
error in operation

> Cannot report error if program will not
terminate

© George Tzanetakis

Things to think about

>

> Persistance of established technologies

> Interpreters, compilers, environments

> Compile-time vs run-time

> Writing vs building vs growing a program
> READ CHAPTERS 1,2

© George Tzanetakis

