CSC330 Summer 2005

Introduction to Functional
Programming

© George Tzanetakis



Functional Languages

> Black box view
> Function y=f(x) f: X->Y

> Domain X, range Y
> x independent variable, y dependent variable

> Function defition, application

© George Tzanetakis



Functional Languages

> Scheme, ML, Haskell
> Al, prototyping, proof-systems
> Advantages

> Uniform view of programs as functions
> Automatic memory management

> Great flexibility, conciseness of notation and
simple semantics

2 : Drawback (used to be)

> Performance

© George Tzanetakis



Then why don't I know about
them

> Persistance of established technology
> More abstract and mathematical

> Object-oriented programming mirros
everyday experience and therefore can be
simpler for certain problems

> Less libraries although rapidly catching up

© George Tzanetakis



Side Eftects — The enemy

> In pure functional languages there are no
assignmnets only bindings

> Referential transparency

> The value of a function depends only on the
function and it's arguments

> Value semantics

> Functions are first class citizens

© George Tzanetakis



Why SML ?

> Very powerful in expressing structured data
> Simple interactive interface
> Higher-order functions
> Polymorphism
> Freedom from side-eftects
> Strong typing with type interence
> Abstract data types

© George Tzanetakis



Why SMLII 2

> Recursion

> Rule-based programming

> Complete, formal semantics

> Combination of the best (IMHO) features of
> Lisp
> Pascal, Modula-2

m, - PrOlOg
£ % C++, Smalltalk

© George Tzanetakis



FP in the real world

> Phone calls in the European Parliament
> Erlang (Ericcson's functional language)

> CDs shipped by Polygram in Europe using
Software AGs Natural Expert

> FFTW (Fast Fourier Transform in the West)

> HOL Theorem prover

_. > Helped design the HP 9000 line of
&> multiprocessors

© George Tzanetakis



