
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

Prolog II

� Prolog

� Facts (only head)

� mammal(human) <-

� Query

� <- mammal(x), legs(x,y)

� Horn clause without a head

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Resolution and Unification
(how queries are expressed)

� a <- a
1
 a

n

� b <- b
1
 b

m

� If bi matches a then we can infer the clause:

� b <- b
1
, ..., b

i-1
, a

1
, ... , a

n
, b

i+1
 , b

m
.

� Another view: combine left hand /right hand
cancel

� b <- a. and c<-b. b,c <- a,b gives c<-a

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Resolution

� Goal or list of goals is a Horn clause without
a head

� Match one of the goals with the head of
known clause

� Simplest case

� mammal(human). <- (fact)

� <-mammal(human). (query)

� mammal(human) <- mammal(human)

� <- (query is proved)
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Unification

� Making two terms “the same”

� me = me

� yes

� me = you

� no

� me = X.

� X = me

� f(a,X) = f(Y,b).

� X =b Y=a

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Computation

� Goal: is a a list of goal as a Horn clause
without head

� Attempt to apply resolution by matching
one of the goal with head of known clause

� Then replace with body, new list of goals

� Repeat until elimination of all goals (proved)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

An example
Facts and rules:
legs(x,2) <- mammal(x), arms(x,2).
legs(x,4) <- mammal(x), arms(x,0).
mammal(horse)<-.
arms(horse,0)<-.
Resolution:

legs(x,4) <- mammal(x), arms(x,0), legs(horse,4).
Unification:

legs(horse,4) <- mammal(horse), arms(horse,0), legs(horse,4)
 <- mammal(horse), arms(horse,0).

Resolution
mammal(horse) <- mammal(horse), arms(horse,0).

 <- arms(horse,0).
arms(horse,0) <- arms(horse,0).

 <-

Query:
<- legs(horse,4).

Initial query is true

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

Arithmetic

� write(3+). evaluates to 3+5

� X is 3+5, write(X) X = 8

Gcd in Prolog:
gcd(U,O,U).
gcd(U,V,W) :- R is U mod V, gcd(V,R,W).

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

Lists

� [a, b, c]

� [a,b,c] can also be written [a,b,c | []] or [a, b |
[c]] or [a | [b, c]]

� [H|T] = [a,b,c]

� H = a, T = [b,c]

� [a|T] = [H,b,c]

� T = [b,c], H = a

� [H,T] is syntactic sugar for .(H,T) (. is cons)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

Actual code examples

� ancestor

� links

� append

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Important

Queries are yes/fail rather than yes/no
No means the system can not prove it, not that is necessarily false

 Prolog:
Order of clauses top-to-bottom
Order of goals left-to-right

Always depth-first search

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Prolog Search Tree
a(X,bob)1 a(X,Y) :- p(X,Z), a(Z,Y).

2 a(X,X).
3 p(amy,bob).

2

X=bob
success

p(X,Z), a(Z,bob)
1

 a(bob,bob)
{X = amy}

3

{X = amy}
success

2

p(bob,Z) ancestor(Z,bob)
1

{X = amy}
failure

Depth-first search strategy

Problem:
a(X,Y) :- a(Z,Y), p(X,Z)
goes into an infinite loop

ORDER MATTERS

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

Cuts

a(X,bob)1 a(X,Y) :- p(X,Z), !, a(Z,Y).
2 a(X,X).
3 p(amy,bob).

2

X=bob
success
(cut prunes this)

p(X,Z), ! a(Z,bob)
1

 a(bob,bob)
{X = amy}

3

{X = amy}
success

2

p(bob,Z) ! ancestor(Z,bob)
1

{X = amy}
failure

Cut “freezes” the choice
made, if it is reached on
backtracking, the subtrees
of parent node are not
examined. Cut “prunes”
the search tree.

Can be used for
efficiency

