Lecture 29

> Logic programming

- Origins: automatic deduction systems, theorem provers
- Basic idea: computation can be viewed as a kind of proof
> Prolog (1970s)
> 1981 Japan's fifth generation project

1
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

Append

> Relation append is a set of tuples of form ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) where Z consists of the elements of X followed by the elements of Y.
([a],[b],[a,b]) is in relation append
([a],[b], []) is not in relation append

Overview

> Programs in functional and imperative languages are mappings (many to one)
> Logic programms are relations (many to many)

First-order predicate calculus

> Constants: numbers/names
> Predicates: functions that are true or false

- Functions : non-boolean values
> Variables : unspecified quantities
> Connectives : and, or, not, implication ->
> Quantifiers : for all, there exists

Logical statements

In English:
A horse is a mammal
A human is a mammal
Mammals have four legs and no arms, or two legs and two arms
A horse has no arms
A human has arms
In FOPC:
mammal(horse).
mammal(human).
for all $x, \operatorname{mammal}(x)->$
$\operatorname{legs}(x, 4)$ and $\operatorname{arms}(x, 0)$ or $\operatorname{legs}(x, 2)$ and $\operatorname{arms}(x, 2)$ arms(horse, 0).
not arms(human,0).

How does it work?

Facts:
mammal(horse).
mammal(human).
for all $x, \operatorname{mammal}(x)->$
$\operatorname{legs}(x, 4)$ and $\operatorname{arms}(x, 0)$ or $\operatorname{legs}(x, 2)$ and $\operatorname{arms}(x, 2)$ $\operatorname{arms}($ horse, 0).
not arms(human,0).
Query: there exists y , legs(human, y) ?
Answer: yes: $\mathrm{y}=2$

Deductive:
Specify properties of solution and find it without specifying exactly how

Inference rule

> Infer: legs(horse,4).
> Axioms, theorems proved by inference

($\mathrm{a}->\mathrm{b}$) and ($\mathrm{b}->\mathrm{c}$)

$a->c$

A logical programming language is a notational system for writing logical statements together with specific algorithms for implementing inference rules

Horn Clauses

> Horn clauses
$>a_{1}$ and a_{2} and a_{3} and $\ldots . a_{n}->b$
> body implies head
> Can express most, but not all, logical statements

An example

English: x is a grandparent of y if x is the parent of someone who is the parent of y.

First-order predicate calculus:
for all x , for all y , (there exists z , parent (x, z) and $\operatorname{parent}(\mathrm{z}, \mathrm{y})$ $->$ grandparent(x, y).

Horn clause:
$\operatorname{parent}(\mathrm{x}, \mathrm{z})$ and $\operatorname{parent}(\mathrm{z}, \mathrm{y})->$ grandparent (x, y)

Procedural interpretation

$>\mathrm{b}<-\mathrm{a}_{1}$ and a_{2} and $\mathrm{a}_{3} \ldots$. and a_{n}
> viewed as a procedure for obtaining b
$>\operatorname{sort}(\mathrm{x}, \mathrm{y})<-$ permutations($\mathrm{x}, \mathrm{y})$ and sorted(y)
$\operatorname{gcd}(u, 0, u)$
$\operatorname{gcd}(u, v, w)<-$ not zero(v), $\operatorname{gcd}(v, u \bmod v, w)$.
$10 \quad$ CS330 Spring 2003

Resolution and Unification (how queries are expressed)

$\nu \mathrm{a}<-\mathrm{a}_{1} \ldots . \mathrm{a}_{\mathrm{n}}$
$>\mathrm{b}<-\mathrm{b}_{1} \ldots . . \mathrm{b}_{\mathrm{m}}$
> If bi matches a then we can infer the clause:
$>\mathrm{b}<-\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{i}-1}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{i}+1} \ldots, \mathrm{~b}_{\mathrm{m}}$.

An example

Facts and rules:
$\operatorname{legs}(x, 2)<-\operatorname{mammal}(x), \operatorname{arms}(x, 2) . \quad$ Query:
$\operatorname{legs}(x, 4)<-\operatorname{mammal}(x), \operatorname{arms}(x, 0) .<-\operatorname{legs}($ horse,4 $)$. mammal(horse).
arms(horse,0).
Resolution:
$\operatorname{legs}(x, 4)<-\operatorname{mammal}(x), \operatorname{arms}(x, 0), \operatorname{legs}(h o r s e, 4)$.
Unification:
legs(horse,4) <- mammal(horse), arms(horse,0), legs(horse,4)
Resolution
mammal(horse) <- mammal(hosre), arms(horse, 0).
$<-\operatorname{arms}($ horse, 0).
arms(horse,0)
$<-\operatorname{arms}($ horse, 0).
<-
Initial query is true
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

Prolog	
ISO Prolog based on Edinburgh Prolog (de facto standard today)	
```ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y). ancestor(X,X). parent(amy,bob).```	
Order can be important: ancestor(x,bob).	
If left to right then x is amy   If right to left then x is bob	
13	CS330 Spring 2003   Copyright George Tzanetakis, University of Victoria

## Actual code example

## Queries

Queries are yes/fail rather than yes/no
No means I can not prove it

