CSC330 Midterm Exam. Spring 2004 (15 pts)

A language that doesn’t affect the way you think about programming is
not worth knowing - Alan Perlis

Read the questions carefully. If you can’t answer a question move on and
come back to it later. Use the empty space (including the back side) between
exam questions to write your answers. You can use the last 2 empty pages
as scratch paper. If you need more paper let me know. The total number of
points is 15.

Good luck .

George Tzanetakis

1 Part 1 (1 pt)

Consider this piece of ML code. What are the values of x and y after it is
compiled and executed ?

val a = 10;

fun £ x = a + x;

fun g a = a + f(a);

val a = 20;

fun £ x = a + x;

val (x,y) = (£(g(20)),g(£(20)));



2 Part 2 (2pt)

List comprehensions are a notation used in mathematics and Haskell to de-
scribe lists with specific properties. They have the form (exp | * «— xs).
For example (z * z|x «— [4,5,6,7,8]; = even) is the list [16,36,64].

Question 1 (1pt) Express the above example of a list comprehension in
ML using map and filter with appropriate functions as arguments.

Question 2 (1pt) Write a function comprehension with type
(la — 'b) — (‘a — bool) — 'a list — 'b list that takes as
arguments a function corresponding to the comprehension expression,
a predicate, and a list. The function returns the resulting list. Call
this function with appropriate arguments so that the result is the list
of the above example.

3 Part 3 (2pt)

What is the value of mystery(tastyl) and mystery(tasty2) ?

datatype pizza = Crust
| Cheese of pizza
| Onion of pizza
| Sausage of pizza
| Anchovy of pizza;

Crust
Cheese(mystery x)
Onion(mystery x)
mystery(x)

Crust;

fun mystery(Crust)
| mystery(Cheese x)
| mystery(Onion x)
| mystery(Sausage x)
| mystery(Anchovy x)

Onion(Cheese (Sausage (Cheese ((Crust)))));
Onion(Cheese (Anchovy (Cheese ((Crust)))));

val tastyl
val tasty2



4 Part 4 (4 pts)

This part is based on the following function:

fun £ x [1 = [[x]]
| £ x (y::ys) = [(x::y::y8)] @ (map (fn x => y::x) (f x ys));

Question 1 (1 pt) What is the type of f 7
e Ala— 'a list — 'a list list
e B('a x 'a list) — 'alistlist
e C 'a — 'a list— 'a list

e D'a list— > 'a— > 'a list

Question 2 (1 pt) Write f in a non-curried form using a 2-tupple as the
argument

Question 3 (2 pt) What is the value of

f 5 [1,2,3,4]

5 Part 5 (1pt)

Using foldl write a function joinlength that takes as argument a string list
and that returns a tuple with all the strings joined and the length of the list.
For example:

joinlength[¢‘ab’’, “‘cd’’, ‘‘ef’’]
is (‘‘abcdef’’, 3)



6 Part 6 (1pt)

A naive recursive implementation of the function length for computing the
length of a list is the following:

fun nlength [] =0
| nlegnth (x::xs) = 1 + nlength xs;

Write a tail recursive (iterative) version of nlength called ilength that
accumulates the result as an additional argument. Write a function length
that behaves exactly like nlength but uses the locally defined (using a let
declaration) function ilength to compute the length of a list.

7 Part 7 (1pt)
This part is based on the following functions

fun powerl(x,0) =1
| powerl(x,n) x * powerl(x,n-1);

fun sum(x,y) = x +y

fun power2(x,n) = let fun ipower(x,0,k) k
| ipower(x,n,k) = ipower(x,n-1,xxk)
in
ipower(x,n,1)
end;

val vl = sum(power1(2,3) + powerl(2,3));
val v2 = sum(power2(2,3) + power2(2,3));

Based on this code, answer the following questions with a short text
justification :
1) Using call-by-value, which calculation is more efficient v1 or v2 7
2) For the computation of v1, which is more efficient call-by-name or call-by-
need 7



8 Part 8 (3pt)

Consider the following Scheme function:

(define (foo f 1)
(cond ((null? L) ’Q))
((not (f (car 1))) (cons (car 1) (foo f (cdr 1))))
(else (foo f (cdr 1)))))

(define (bar 1) (= (length 1) 2))
Question 1(1pt) What is the result of
(foo bar "((12) (1 23) (1234) (12345)))

Question 2(1pt) Write these functions in ML

Question 3(1pt) How would you write the function call of question 1 using
the ML functions. Explain in your own words what foo does.



That’s it enjoy your reading break.



