
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

CS 330 Lecture ?

� Operational Semantics for uscheme

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Variables & functions

Variables refer to locations – to examine or change them
1) lookup their names in p (the environment) to find their locations
2) look or change the contents of the lcoations

Let-bindings introduce fresh locations, bind them to variables and
initialize them

Function application also introduces fresh locations, which hold
actual parameters. These lcoations are then bound to the names of the
formal parameters of the function being applied.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Variables

x in dom p p(x) in dom s

<VAR(x), p , s> => <s(p(x)), s>

lookup of variable
first find location
to which x corresponds
then find value in that
location
(compiled time
runtime)x in dom p p(x) = l <e, p, s> => <v, s'>

<SET(x,e), p, s> => <v, s'{l->v}>

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Function abstraction &
application

Functional abstraction wraps the current environment, along with a lambda
expression in a closure. LAMBDA makes a copy of the current environment.
Because environments can be copied, they have to map names to locations,
not values in order to supprort shared mutable state.

Function application uses the environment in the closure, extended by
binding the fomral parameters to fresh locations. These locations are
initialized by the values of the actual parameters, but the body e might
change the contents of these locations during it's evaluation.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Function Application II

Environment in a closure, binds the free variables of the closure
(no such environment is needed in Impcore, because all functions
are defined at top level, so any free variables can necessarily be
found in the global environment g)

Parameters don't extend the empty environment as in ImpCore
but the environment Pc stored in the closures.

IMPORTANT: the evaluation is completely independent of the
environment p of the calling function, a Scheme (or ML) function
behaves the same way no matter where it is called from

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Understanding static vs dynamic
scoping

In Scheme each function is <lambda expression, environment>
In Lisp each function is <lambda expression>

How do we get the free variables ?
From the environment of the caller (dynamic scoping)

