CS 330 Lecture 2

> Outline

- Syntax = form, structure
- Semantics = meaning
> Early days lengthy English and examples for both syntax and semantics
> 1950's Noam Chomsky - Context-Free Grammars for Linguistics
- Backus \& Naur -> BNF diagrams
> EBNF
- Syntax diagrams

Describing Programming

 Languages

Lexical structure

> Words = units of meaning in language
> Tokens = units of meaning in PLs

- Correspondance between the written representation of the language and the tokens in a grammar for the language

Lexical structure

> Numbers
> oo-format i.e oo or 0000
, Num-format i.e 2 or 6
> Special symbols +-x
> Real PLs
> Reserved words
> Literals

- Special Symbols
> Identifiers

```
// the main program (this is a
Comment)
commint)
    integer N;
    Read Int (N)
```


Algol code example

 begin
 real array Data[1:N]
 real sum, avg:
 real sum,
 integer i;
sum:=0;
for $i:=1$ step 1 until N do
begin real val;
Read Real(val);
Data[i]:=if val <0 then
Data[i]:=if val<0 th
val else val
for $i:=1$ step 1 until N do
sum:=sum + Data[i];
avg: =sum/N;
Print Real(avg)
end

Find the reserved words literals, special symbols and identifiers of this code

Back to Moo

(longer munch + regular expr)
» OOMBER is one or more o symbols
> o+ (why is ooooo not oo and ooo)
> NUMBER is one or more digits
ン (0|1|2|3|4|5|6|7|8|9)+
> [0-9]+
> OPERATOR is $(+|-| x)$
> Regular expressions
> concatenation, repetition, selection

Lexical Analysis

CONSTANT(4) OPERATOR(+) CONSTANT(10)

What about parentheses?
$9 \quad \begin{aligned} & \text { CS330 Spring } 2003 \\ & \text { Copyright George Tza }\end{aligned}$ Copyright George Tzanetakis, University of Victoria

Context-Free Grammars

> sentence -> noun-phrase verb-phrase
> noun-phrase -> article noun
$>$ article $->$ a \mid the
> noun -> girl|dog
> verb-phrase -> verb noun-phrase
> verb -> sees pets

Some phrases
(language of the grammar)
The girl sees a dog A girl pets the dog A dog sees a girl The dog pets the girl
??

What about Moo?

A grammar for Moo

$>$ moosing -> moosing + moosing moosing * moosing (moosing) constant
> constant -> oomber | number
> ooomber -> oomber o|o
> number -> number digit | digit
$\stackrel{\text { digit }=0|1| 2|3| 4|5| 6|7| 8 \mid 9 ~}{\text { | }}$
$13 \quad$ CS330 Spring 2003

Expression notations

> Prefix
~*+ 2030 60=?
> Postfix

- $2030+60$ * $=$?
$>$ Infix
> $20+30 * 60=? 1$
> What about
> if (exp) then exp else exp;
14 CS330 Spring 2003

A grammar for Moo

> moosing $->$ moosing + moosing moosing* moosing (moosing) constant
> $5+2^{*} 3+4=$?

- why does Moo answer 25 ?
$17 \quad$ CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

Next lecture:
 More on Syntax and Semantics
 + Intro to Functional

> PLEASE don't start leaving the class when you read the title of this slide
> Recognizer, parser
> shift-reduce or bottom-up parsers
> top-down
> recursive decent parsing
> Functional programming

