
CSC330 Summer 2004 Assignment 4

George Tzanetakis

July 17, 2004

1 Overview

This assignment will be done in groups of two. You are free to choose your
own group. In case you do, I will need an email from both partners to
confirm that they are in group. Otherwise you will be assigned randomly
a partner. YOU NEED TO EMAIL ME IN EITHER CASE. FAILURE
TO DO SO MIGHT RESULT IN NOT GETTING GRADE FOR THE
ASSIGNMENT.
The careful design and documentation (i.e comments) of your code will

be important factors in your grade. If there is a bug it’s better to report
it than hide it. Be honest, precise and clear and you shall be rewarded.
NEVER (at least in this class) sacrifice clarity for efficiency of execution
unless explicitely asked to do so. PROVIDE A SET OF WELL-DESIGNED
TEST CASES FOR EVERY PART OF THE ASSIGNMENT.
The assignment is worth 10 points (10% of the final grade) and will

be graded in using half-point intervals. The overall documentation and
packaging of your submission according to the instructions provided in the
web page (READ THEM CAREFULLY) will be worth 1 point.
The main goal of the assignment is to familiarize with how modules and

objects can be used to structure programs. It is also a good exercise to learn
more about ML and Smalltalk. I hope you find the assignment interesting
and helpful.

2 Part 1 (4 pt)

In this part we will use a functor to implement generic matrix arithmetic.
To simplify things we will only consider zero and sum as the operations that
the elements of a matrix must support. This can be expressed using the
following signature:

1



signature ZS =

sig

type t

val zero : t

val sum : t * t -> t

end;

An example of structure implementing the above signature is IntZS.

structure IntZS:ZS =

struct

type t = int

val zero = (0)

fun sum(x,y) :t = x + y;

end;

Similarly implement the following structures that satisfy the
ZS signature: RealZS, ComplexZS and RationalZS (2pt)
Use tuples of reals to represent complex numbers and tuples of integers

for rational numbers. For example the complex number 1 + i will be repre-
sented as (1.0, 1.0). To add two complex numbers the we add the real parts
and imaginary parts. So if a is 1+ i and b is 2 then a+b is 3+ i which would
be (3.0, 1.0).
For example the rational number 1

2
will be represented as (1,2). The

following rule can be used to add rational numbers a

b
+ c

d
= a∗d+b∗c

b∗d

The rational numbers need to be reduced to their lowest term represen-
tation after each operation by dividing both nominator and denominator
with their greatest common divisor. For example 10

12
needs to be reduced to

5
6
.

val a = (0.0, 1.0)

val b = (0.3, 0.0)

val c = ComplexZS.sum(a,b)

val a = (1,2)

val b = (1,3)

val c = RationalZS.sum(a,b)

The answers should be c = (0.3,1.0) for the complex numbers and c =
(5,6) for the rationals.

Implement a functor that can be used to generate specific struc-
ture for matrix arithmetic.(2pt)

2



Here is a rough outline of how it will look/be used. Matrices are repre-
sented as lists of rows (each row in turn is a list of elements Z).

functor MatrixZS(Z:ZS): ZS =

struct

type t = Z.t list list;

val zero = [];

(* write sum here using only ListPair.map and Z.sum *)

end;

structure IntMatrix = MatrixZS(IntZS);

IntMatrix.sum([[1,2], [3,4]], [[5,6],[7,8]]);

(* the answer should be: val it = [[6,8],[10,12]] : IntMatrix.t *)

structure RationalMatrix = MatrixZS(RationalZS);

RationalMatrix.sum([[(1,2),(1,2)], [(3,4),(3,4)]], [[(1,3),(1,2)], [(1,2),(1,3)]]);

(* the answer should be: val it = [[(5,6),(1,1)],[(5,4),(13,12)]] :

RationalMatrix.t *)

3 Game State Management (6pt)

As we talked about in class, one of the major strengths of object-oriented
programming is the ability to simulate/model the real world. In this part
of the assignment you will implement a simple but not trivial backend to a
multiplayer/multisession adventure game. We will not deal with any graph-
ics, storylines, combat-systems, sockets/networks etc (these are left for extra
credit).
The main goal of this part is to familiarize you with state-management

using the imperative object-oriented programming style and teach you more
about Smalltalk.
The game is relatively simple but has a few interesting constraints. Mul-

tiple games can be played simultaneously. All aspects of the game: players,
items, rooms can be added while the game is running.
Here are the basics operations that need to be supported. Items have

a name and a value in coins. Players can pick and drop items. The value
of players is increased everytime they pick an item and decreased everytime
they drop an item correspondingly based on the value of the item.

3



Rooms are connected to each other by exits. Each room can have an
arbitrary number of exits each labeled by a unique identifier. For example
the traditional #north, #south, #east, #west movement can be supported
with appropriate commands but also other exit names such as #teleport,
#george or whatever else you image. There is no limit to the number of
exits a room can have and exits are directed (go only in one direction). One
can think of the map of the world as a directed graph with each edge labeled
by the exitName. So to have proper north/south movements two edges need
to be created: one for the north direction and one for the South.
Players can move from room to room following the exits and the game

must keep track of where they are. Obviously dropping and picking items
is based on the room the player is in.
Although simple this game shows the foundations behind any multi-user

turn-based adventure game.

3.1 SmallTalk implementation

You will need to create the following classes (more details are provided later):

• GameObject: Player and Item are derived classes of this class which
serves as an interface. Use the subclassResponsibility keyword to dele-
gate the implementation to the derived classes. Read about it in your
book.

• Item: A derived class from GameObject. The main method to imple-
ment is print which just outputs the name of the item and it’s value
in coins.

• Player: A derived class from GameObject. The main method to im-
plement is print which just outputs the name of the player and it’s
value in coins followed by a list of Items the player is carrying. A
Player contains a Dictionary of Items. In addition to supporting print
it supports the following messages: pickItem:, dropItem:, lookupItem:,
hasItem: with the obvious semantics.

• Room: has a name, a dictionary of neighbors (other Rooms and a
dictionary of GameObjects (players or items). It supports the following
messages: addNeighbor:, getNeighbor, removeNeighbor:, addObject:,
removeObject:, lookupObject:. Print a room shows the name, objects
in side it (players or items) and the available exits.

4



• Game: this is the main class for the game. Individual game sessions
are instances of the Game class. The following messages are supported:
addPlayer:, addRoom:, addItem:, connect:, move:, pick:, drop:, look-
Through:. A dictionary of playerPositions associating players with
rooms and a dictionary of rooms will probably be needed.

The game initially starts with one room the #ReceptionHall but new
rooms can be added at runtime. Here is an example session with the game:

;; Start g1 game session

(val g1 (init Game))

;; add two players

(addPlayer: g1 #Dale 100)

;; see the game through the eyes of Dale

;; important when each player is in a different room

(lookThrough: g1 #Dale)

(addPlayer: g1 #David 50)

(lookThrough: g1 #David)

;; add an items

(addItem: g1 #ReceptionHall #Midterm 15)

(lookThrough: g1 #David)

(addItem: g1 #ReceptionHall #Final 40)

;; pick and drop items

(pick: g1 #David #Midterm)

(pick: g1 #Dale #Final)

(drop: g1 #Dale #Final)

;; Game 2 player and item commands

(val g2 (init Game))

(addPlayer: g2 #George 100)

(lookThrough: g2 #George)

(addItem: g2 #ReceptionHall #Midterm 15)

(addItem: g2 #ReceptionHall #Final 40)

(pick: g2 #George #Midterm)

(pick: g2 #George #Final)

5



Here is the output before Dale drops the final:

Location=ReceptionHall

Visible=

Player=Dale-140

Carrying=

___Item=Final-40

_

Player=David-65

Carrying=

___Item=Midterm-15

and here is after Dale drops the final:

Location=ReceptionHall

Visible=

Player=Dale-100

Player=David-65

Carrying=

___Item=Midterm-15

_

Item=Final-40

The exact formating of the output is up to you as long as the proper
semantics of drop/pick and the other commands are implemented. Now let’s
create some rooms and move around.

;; Building a map (each room can

;; have an arbitrary number of unidirectional exits)

(addRoom: g1 #NorthRoom)

(addRoom: g1 #Bar)

;; make directed edges/exits between rooms

(connect: g1 #ReceptionHall #north #NorthRoom)

(connect: g1 #NorthRoom #south #ReceptionHall)

(connect: g1 #ReceptionHall #drink #Bar)

6



(connect: g1 #Bar #return #ReceptionHall)

;; addItem in a new room

(addItem: g1 #Bar #Beer 20)

;; Movement + drop/pick

(move: g1 #Dale #north)

(move: g1 #David #drink)

(drop: g1 #David #Midterm)

(pick: g1 #David #Beer)

(lookThrough: g1 #David)

(drop: g1 #David #Beer)

(lookThrough: g1 #David)

(pick: g1 #David #Beer)

(move: g1 #David #return)

(lookThrough: g1 #David)

Here is the output of the last lookThrough command.

Location=ReceptionHall

Visible=

Item=Final-40

Player=David-70

Carrying=

___Item=Beer-20

_

Exits=

north

drink

It is my hope that these examples clearly show the semantics of the
game. If you have any further questions let me know via email.
IMPORTANT: YOU CAN ASSUME EACH ROOM, PLAYER, ITEM

HAS A UNIQUE NAME
IMPORTANT: THE PURPOSE OF THIS PART IS TO TEACH YOU

ABOUT OBJECT ORIENTED PROGRAMMING. IT IS POSSIBLE TO
CREATE ONE BIG OBJECT THATDOES EVERYTHING BUT THAT IS
NOT WHAT I WANT. MAKE SURE YOU FOLLOW THE DIRECTIONS
FOR STRUCTURING THE CODE INTO OBJECTS.

7



3.2 Deliverables

The code for the game MUST be written using the Smalltalk-like language
interpreter provided (the interpreter is written in ML). You will notice that
the existing implementation does not directly support deleting a key,value
association from a dictionary. To get around this you will either need to
modify the initial basis code in the interpreter or make your own extension
of the Dictionary class. In either case you will need to understand how
Dictionaries are implemented. After that the rest of the assignment is pretty
much manipulating the dictionaries appropriately.
Grading is straightforward 3 points for addPlayer, addItem:, pick:, drop:

(single room mode) and 3 points for being able to add rooms, move (multi
room mode).

4 Extra Credit

• (2pt) Extend the signatures, structures and functor of Part 1 to have
the full albebraic specifications (sum, diff, prod, quot, one, zero). Make
matrices where each element is matrix of real numbers.

• (4pt) Implement pretty printing for the all the structures defined in
part 1. Write a function toLatex() that converts each structure to
the appropriate latex commands to print the stuff nicely like in math
book. Part of the extra credit is learning latex and how to use it.

• (1pt) Implement part 2 (the game engine) in actual Smalltalk. Any
implementation (Squeak, GNU) is fine.

• (1pt) Implement part 2 in C++. Write a 1 page paper contrasting the
two implementations.

• (4pt) Make an interesting game in actual Smalltalk based on the above
code. For example add network support, graphics, map generators etc.
Any reasonable addition will count however grading is up to me with
a maximum of 4 points.

8



5 Submission

Please follow the submission guidelines from the course webpage. In sum-
mary tar and gzip everything into one file. Include a README explaining
how things are structured. Include all the code necessary to compile the
assignment not just the parts you extended/modified.

HAVE FUN AND I HOPE YOU ENJOY THIS ASSIGNMENT AS
MUCH AS I ENJOYED PREPARING IT

9


