
CSC330 Summer 2004 Assignment 3

George Tzanetakis

June 18, 2004

1 Overview

This assignment will be done in groups of two. You are free to choose your
own group. In case you do, I will need an email from both partners to
confirm that they are in group. Otherwise you will be assigned randomly
a partner. YOU NEED TO EMAIL ME IN EITHER CASE. FAILURE
TO DO SO MIGHT RESULT IN NOT GETTING GRADE FOR THE
ASSIGNMENT.
A random 25% sample of the students will be orally interviewed by me

regarding their submission. Make sure you have written everything you
submit. Solve the parts of the assignment in the order they are given as
they get progressively harder. If you are stuck somewhere move to the next
part and come back later.
The careful design and documentation (i.e comments) of your code will

be important factors in your grade. If there is a bug it’s better to report
it than hide it. Be honest, precise and clear and you shall be rewarded.
NEVER (at least in this class) sacrifice clarity for efficiency of execution
unless explicitely asked to do so. PROVIDE A SET OF WELL-DESIGNED
TEST CASES FOR EVERY PART OF THE ASSIGNMENT.
The assignment is worth 10 points (10% of the final grade) and will

be graded in using half-point intervals. The overall documentation and
packaging of your submission according to the instructions provided in the
web page (READ THEM CAREFULLY) will be worth 1 point.
The main goal of the assignment is to familiarize with how the semantics

of a programming language are expressed in an actual working interpreter.
It is also a good exercise for learning more about C, Scheme and ML pro-
gramming. I hope you find the assignment interesting and helpful. The
assignment is intentionally not fully specified so you get practice in how
programming is in the real world. Part of your task is to interpret each part
of the assignment and provide a reasonable answer and implementation.

1



IMPORTANT: A major goal of this assignment is to understand how
the provided interpreters work. You should study their source code in detail
and be ready to answer questions about them during the interview (not only
the parts you modify). The assignment is easy but requires understanding
and the training wheels are off this time.

2 Part 1 (3 pt)

Write 1,2,3 of assignment 2 in Scheme (each part is worth 1 point). Make
sure your programs run with the provided interpreters for Scheme imple-
mented in C and ML. Make the necessary adjustments within reason to
allow implementation in Scheme (for example ignore the infix part).

3 Part 2 (2 pt)

Add a new primitive list which should accept any number of arguments
and return a list consisting of these arguments. (we have already shown
list1, list2 for specific number of arguments). For example the result of
evaluating (list 1 2 3) is (1 2 3). Add the new primitive to the C version of
the interpreter (1 pt) and to the ML version of the interpreter (1 pt).

4 Part 3 (2 pt)

In this part you will extend assignment 1 to include binding of names to
circuits. Your language will have two types of expressions: bindings and
print statements. To illustrate this consider the following input file:

foo := - 0.5 0.8

bar := - 0.5 0.8

print - foo bar

This file should produce the same output as the original assignment input
file:

- - 0.5 0.8 - 0.5 0.8

You will have to extend your lexical analysis and parsing to handle iden-
tifiers and include a symbol table to lookup circuits. Output is produced
only with print expressions and is the same as assignment 1.

2



You can choose to either extend your own implementation of assignment
1 or use the provided SML solution (or both but no extra credit for doing
that other than your increased knowledge)

5 Part 4 (3pt)

Add a trace facility to the interpreter (both for the C and ML version).
Whenever a trace function is called, it’s name (if any) and arguments should
be printed to the terminal. (If the name of the function is not known, print
a representation of it’s abstract syntax). When a traced function returns
the function and its result should be printed. The trace output should be
clearly labelled and should include identation to indicate calls and returns.
Provide primitives to turn tracing of individual functions on and off.

Trace length, sieve and remove multiples. Trace part 1 of this assignment.
When calling a closure print it in closure form instead of printing its

name. Which of the two methods is better ? Explain in your README file.

6 Extra Credit

• (1pt) Extend your circuit interpreter (part 3) to include simple func-
tions (basically parametrized circuits). Part of the extra credit is un-
derstanding what this means and coming up with the right syntax and
primitives.

• (2pt) Do exercise 32 (page 142) of the Ramsey Kamin Book

• (3pt) Do exercise 36 (page 143) of the Ramsey Kamin Book

7 Submission

Please follow the submission guidelines from the course webpage. In sum-
mary tar and gzip everything into one file. Include a README explaining
how things are structured. Include all the code necessary to compile the
assignment not just the parts you extended/modified.

HAVE FUN AND I HOPE YOU ENJOY THIS ASSIGNMENT AS
MUCH AS I ENJOYED PREPARING IT

3


