
CSC330 Summer 2004 Assignment 2

George Tzanetakis

May 28, 2004

1 Overview

PLEASE READ CAREFULLY THIS DESCRIPTION ASMISSING SMALL
DETAILS MIGHT COST YOU
A random 25% sample of the students will be orally interviewed by me

regarding their submission. Make sure you have written everything you
submit. For any function you are trying to write, you can request what is
the desired output for a particular input by email. Solve the parts of the
assignment in the order they are given as they get progressively harder. If
you are stuck somewhere move to the next part and come back later.
The careful design and documentation (i.e comments) of your code will

be important factors in your grade. If there is a bug it’s better to report
it than hide it. Be honest, precise and clear and you shall be rewarded.
NEVER (at least in this class) sacrifice clarity for efficiency of execution
unless explicitely asked to do so. PROVIDE A SET OF WELL-DESIGNED
TEST CASES FOR EVERY PART OF THE ASSIGNMENT.
The assignment is worth 10 points (10% of the final grade) and will

be graded in using half-point intervals. The overall documentation and
packaging of your submission according to the instructions provided in the
web page (READ THEM CAREFULLY) will be worth 1 point. Please
submit ONLY one file named assignment2.sml with the source code for
all the parts clearly documented. Late assignment policy: If the assignment
is submitted within three days from when it was due, you will get half the
grade you would get if you had submitted on time. You will not be able to
submit after three days. (exceptions to this rule by request)
The main goal of the assignment is to familiarize you with SML and

especially the use of higher-order functions and list recursion. I hope you
find the assignment interesting and helpful.

1

2 Part 1 (1 pt)

Write the following support functions that you might need in the other parts
of the assignment. Helpful builtin functions that you might need to use are:
explode (converts a string to a list of characters, implode (converts a list of
characters to a string) and length (returns the length of a list).

• tabulate(i,j) that returns the list of integers from i to j. For example
tabulate(2,8) is [2,3,4,5,6,7,8]

• min(x,y) that returns the minimum of two numbers and based on it
min3(x,y,z) that returns the minimum of three numbers. For example
min3(5,2,3) is 2.

• zipwith f (xs,ys) that takes as argument a function of a 2-tupple and
two lists and applies the function by taking one item from each list
forming a tuple, applying the function and returning a list of the re-
sults. If the lists have unequal lengths the extra items that can not be
paired are ignored. For example zipwith (fn(x,y)=>x+y) ([1,2,3],[1,2,3])
is [2,4,6] and zipwith (fn(x,y)=¿x+y) ([1,2,3],[1,2,3,4,5]) is also [2,4,6];

• zip (xl,yl) that takes as argument a tupple of lists and returns a list of
tuples formed by pairing each corresponding elemnt of the lists. For
example zip([1,2,3],[”a”,”b”,”c”]) is [(1,”a”), (2,”b”), (3,”c”)]. If the
lists have unequal lenghts the extra items that can not be paired are
ignored. Use the function zipwith to define zip.

• zipcount(ls) that returns a list of tupples who first element is a counter
and the second element is the list item. For example zipcount([#”a”,#”b”,
#”c”]) is [(0,#”a”),(1,#”b”),(2,#”c”)].

• copy(n,ls) that returns a list of n repetitions of ls. For example the
result of copy(4,[1,2,3]) is [1,2,3,1,2,3,1,2,3,1,2,3]

• dropwhile p ls which takes as argument a predicate (a function that
returns a boolean value) and drops the first items of a list that match
the predicate. For example the result dropwhile (fn(x)=¿x mod 2 =
0) [2,4,5,2,4] is [5,2,4].

2

3 Part 2 (2 pt)

In this part you will implement two well known sorting algorithms and
compare their performance for sorting list of real numbers.
The following code can be used to generate a list of 30000 real numbers.

local val a = 16807.0 and m = 2147483647.0

in fun nextrand seed =

let val t = a * seed

in t - m * real(floor(t/m)) end

end;

fun randlist (n,seed,tail) =

if n=0 then (seed, tail)

else randlist (n-1, nextrand seed, seed::tail);

val (r,ls) = randlist(30000,5.0,[]);

Your task is to implement two function insort and quicksort that can be
used to sort the ls list of real numbers. Both insort and quicksort will have
type fn: real list -> real list. In both cases sorting is in ascending order.
The idea behind insertion sort is simple. Items are picked from the input

list and are added to a new list maintaining the invariant that the new list
is sorted. If the item to be inserted is less than the first item of the sorted
list under construction it can be appended on the front. If it is not it is
inserted the tail of the remaining under construction sorted list.
Quick sort, invented by C.A.R Hoare, was among the first efficient sorting

algorithms. It works by divide and conquer:

• Choose some value a, called the pivot from the input

• Partition the remaining items into two parts: the items less than or
equal to a, and the items greater than a

• Sort each part recursively, then put the smaller part before the greater

To implement quicksort use a helper function partition (for each partition
step) that takes as input a left partition list, a right partition list and the
items that haven’t been visited. In each call to partition the head of the
items is appended to either the left or right partition depending to it’s
relation with pivot a until the items list is empty.

3

Compare the performance of insort and quicksort for a large lists of
random numbers. Which one is faster ? Why ? (try to explain informally
not just say one is O(something) and the other is O(somethingelse))
Examples of running the functions:

- insort([5.0,2.0,3.0,1.0,4.0]);

val it = [1.0,2.0,3.0,4.0,5.0] : real list

- quicksort([5.0,2.0,3.0,1.0,4.0]);

val it = [1.0,2.0,3.0,4.0,5.0] : real list

4 Part 3 (3 pt) Big Numbers

(IMPORTANT YOU ARE NOT ALLOWED TO USE DIRECT RECUR-
SION IN THIS PART - ONLY HIGHER-ORDER FUNCTIONS SUCH AS
foldl, foldr, map)
The bultin operations of arithmetic in most programming languages can

only handle integers in some restricted range. For numbers outside this
range the operations are not well-defined. One way round the problem
is to construct our own package of functions for computing with integers
of arbitrary size. In this part, your task is to define variable-length non-
negative integer addition and multiplication.
The main idea is to represent a non-negative integer x as a non-emply

list of “digits”. So for example the number 145 will be represented as [1,4,5].
The is the usual way of representing numbers with the most significant digit
first. This representation is not unique since an arbitrary number of leading
zeros can be added to an integer without changing its value.
Write a function strep that removes the leading zeros from a list. Write a

function allign that takes two numbers in list format and adds the necessary
leading zeros to make them equal in length. Now we are ready to define
function vadd which adds two variable-length large non-negative integers.
The idea is to allign the two numbers and add them digit by digit the

result then needs to be normalized by propagating the carry to ensure that
each digit is less than 10. For example [9,5] ++ [5] is [9,10] which needs
to be normalized to [1,0,0]. The carry needs to be propagated from the
least significant digit to the most significant digits (Hint: use foldr) and any
leading zero must be removed using strep.
First write a function vadd that takes two variable-length non-negative

integers represented as lists and performs the addition. Then convert that
function to the infix ++ so that you can type in the ml prompt: [9,5] ++
[5] and it will work.

4

The next task is to write function vmul that multiplies two variable
length non-negative integers represented as lists. Similarly convert vmul to
an infix version using the ** symbol. For example: [2,0] ** [5] is [1,0,0]. The
number after the infix keyword is precedence so by doing infix 6 ++ and
infix 7 ** you will get the correct precedence. For example [5] ++ [2] ** [3]
will be [1,1] instead of [1,0].
To implement multiplication write the following helper functions: dmul

multiply an integer represented by a list with a single digit. Use a higher-
order function to apply dmul for each digit of one number and the other
number creating the list of partial sums. (do a multiplication on paper to
remember the partial sums). Then the last step is to go over the list of
partial sums shifting appropriately and adding using vadd. Again use a
higher-order function for that purpose.

5 Part 4 Edit Distance (3 pt)

The words computer and commuter are very similar as one can tranform
the first to the second by changing only one letter. The word sport can be
changed into sort by deleting p and in the other direction by inserting p.
The edit distance of two string, s1 and s2, is defined as the minimum

number of point mutations (change, insert, delete a single letter) required to
change s1 into s2. There are many applications of edit distance such as file
revision, spelling correction, plagiarism detection, molecular biology, speech
recogntion and query-by-humming.
The edit distance of a string to the empty string is the length of the

string (delete every letter). Consider the edit distance between two strings
string1 and string2 with first characters c1 and c2 respectively and remaining
characters s1 and s2. For example if string1 = sport and string2 = hello
then c1 = s, c2 = h, s1 = port and s2 = ello. Then the edit distance D
between string1 and string2 is the minimum of the following three cases:

• D(s1,s2) + (if c1 = c2 then 0 else 1) (* change or no change *)

• D(string1, s2) + 1 (* insertion one way *)

• D(s1, string2) + 1 (* deletion one way *)

5

Here is an example of computing edit distance

A = acgtac gtacgt

|| ||| |||| |

B = acatacttgtac t

^ ^^ ^

| || delete

| insert*2

|

change

D A B = 4

These are the only possible cases of editing and by taking the least
expensive of the three (the min) we can find the edit distance.
Implement directly this definition of edit distance in ML. (hint: use the

explode and implode functions to convert string to lists of characters)
This direct implementation is very slow for long strings. The technique

of dynamic programming can be used to significanlty speed up the compu-
tations.
The idea is to use a two-dimensional matrix m[0..—s1—, 0..—s2—] to

hold the edit distance values (—— is used to denote the length of a string).

m[i,j] = d(s1[1..i], s2[1..j])

m[0,0] = 0

m[i,0] = i, i= 1..|s1|

m[0,j] = j j= 1..|s2|

m[i,j] = min(m[i-1,j-1] + if (s1[i] = s2[j]) then 0 else 1,

m[i-1, j] + 1,

m[i,j-1] + 1)

The matrix can be computed row by row and each row only depends on
the previous row and the strings to be compared. Because distance are only
computed once propagating values using this matrix is much faster than the
direct implementation of the recursion.
In an imperative language an array would be used to hold the matrix.

The following illustration shows the process of computing the edit distance
using the matrix. Each rows is calculated left to right using information
from the previous row. The value of the “current” element depends on the

6

north and northwest elements of the previous row and the previous element
on the same row (west). Basically these three dependencies correspond to
change (northwest), insertion and deletion and the minimum is chosen.
For example for the value 2* (g row, t column) of the matrix bellow is

calculated as follows min(1+1, 2+0 (the row,column string characters are
the same, 1+3) = 2.

a c a t -> B

0 1 2 3 4 ...

a: 1 0 1 2 3

c: 2 1 0 1 2*

g: 3 2 1 1 2

t: 4 3 2 2 1

.

|

V

A

Your task is to write the same dynamic programming algorithm using
higher order functions and NOT USING AN ARRAY. Also NO DIRECT
RECURSION should be used for this part only higher-order functions. The
main idea is to create a function doRow that given a row (the “previous”
row) and a tuple of boundary elements propagates from left to right the
values of the new row. Write an appropriate updElem function and using a
higher-order function to implement doRow.
For example with input 0,1 (the boundary conditions) and [1,2,3,4] the

first row the result of this step would be [0,1,2,3] (the second row of the
matrix). In order to compute this value it is necessary to know the character
from the A string corresponding to the row and the whole string B. Hint:
you might find the function zipCount that you wrote in part I useful to
initialize the process. Combining this function
Another higher-order function using doRow can be used to propagate

the row changes down the matrix. In the end the requested value can be
found as the southeast corner of the matrix. Basically, one higher-order
function with the appropriate arguments propagates the changes for each
row and another one propages each row down the column direction.
Compare the performance of the two implementation using the following

test cases.

val test1a = "acgtacgtacgt";

7

val test1b = "acatacttgtact";

val test2a = copy 2 test1a;

val test2b = copy 2 test1b;

(* if you see no difference increase the number of copies *)

6 Extra Credit

There is no limit to how many extra credit points you get and they can be
used to improve your midterm/final or other assignment grades. Extra credit
problems are not necessarily hard but many times they are. In addition in
many cases I haven’t solved them myself so I don’t know exactly how hard
they are. In addition, they are not as fully specified as the main assignment
as part of the challenge is to work with less information. Because of that
grading is more subjective.

• (2pt) Implement variable length subtraction and division. Be careful
about your design decisions and interpretation of the results you get.

• (1pt) For the edit distance instead of working by rows and columns it
is possible to work on diagonals. Make a functional version of a edit
distance program that uses diagonals.

• (2pt) Write functions insert, delete, change that do point mutations
to strings. Write a function that takes as input a string and a list
of functions (IMPORTANT list of functions) and returns the result
of applying each function one after the other to the input. Based on
the dynamic programming algorithm you have implemented extend
your code so in addition to the minimum distance it returns the list of
functions that need to be applied for achieving the minimum distance.
Verify that these point mutations indeed make the strings equal.

HAVE FUN AND I HOPE YOU ENJOY THIS ASSIGNMENT AS
MUCH AS I ENJOYED PREPARING IT

8

