Lecture 29

> Prolog
> Facts (only head)
> mammal(human) <-
> Query
> <- mammal(x), $\operatorname{legs}(\mathrm{x}, \mathrm{y})$
> Horn clause without a head

Resolution

> Goal or list of goals is a Horn clause without a head
> Match one of the goals with the head of known clause
> Simplest case
> mammal(human).<- (fact)
> <-mammal(human). (query)
» mammal(human) <- mammal(human)
> <- (query is proved)

Resolution	
> Goal or list of goals is a Horn clause without a head	
> Match one of the goals with the head of known clause	
> Simplest case	
> mammal(human).<- (fact)	
> <-mammal(human). (query)	
> mammal(human) <- mammal(human)	
* <- (query is proved)	
3	

Resolution and Unification

(how queries are expressed)
$>\mathrm{a}<-\mathrm{a}_{1} \ldots . . \mathrm{a}_{\mathrm{n}}$
$>\mathrm{b}<-\mathrm{b}_{1} \ldots . . \mathrm{b}_{\mathrm{m}}$
$>$ If bi matches a then we can infer the clause:
$>b<-b_{1}, \ldots, b_{i-1}, a_{1}, \ldots, a_{n}, b_{i+1} \ldots, b_{m}$.
> Another view: combine left hand/right hand cancel
$>\mathrm{b}<-\mathrm{a}$. and $\mathrm{c}<-\mathrm{b} . \quad \mathrm{b}, \mathrm{c}<-\mathrm{a}, \mathrm{b}$ gives $\mathrm{c}<-\mathrm{a}$
2
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

Unification

" Making two terms "the same"
> $m e=m e$
> yes
\Rightarrow me $=$ you
> no
$>\mathrm{me}=\mathrm{X}$.
> $\mathrm{X}=\mathrm{me}$
> $f(a, X)=f(Y, b)$.
> $\mathrm{X}=\mathrm{b} Y=a$

Computation

> Goal: is a a list of goal as a Horn clause without head
> Attempt to apply resolution by matching one of the goal with head of known clause
> Then replace with body, new list of goals
> Repeat until elimination of all goals (proved)

An example

Facts and rules:
$\operatorname{legs}(x, 2)<-\operatorname{mammal}(x), \operatorname{arms}(x, 2)$.
$\operatorname{legs}(x, 4)<-\operatorname{mammal}(x), \operatorname{arms}(x, 0)$.
Query:
$<-\operatorname{legs}($ horse,4).
mammal(horse)<-.
arms(horse,0)<-.
Resolution:
$\operatorname{legs}(x, 4)<-\operatorname{mammal}(x), \operatorname{arms}(x, 0), \operatorname{legs}($ horse, 4$)$.
Unification:
legs(horse,4) <- mammal(horse), arms(horse,0), legs(horse,4)
Resolution
mammal(horse) <- mammal(horse), arms(horse,0).
$<-\operatorname{arms}($ horse, 0).
$\operatorname{arms}($ horse, 0) $<-\operatorname{arms}$ (horse,0)
$<-\quad$ Initial query is true
6
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

Arithmetic

> write(3+). evaluates to $3+5$
> X is $3+5$, write $(\mathrm{X}) \mathrm{X}=8$

Gcd in Prolog:
gcd(U,O,U).
$\operatorname{gcd}(\mathrm{U}, \mathrm{V}, \mathrm{W}):-\mathrm{R}$ is $\mathrm{U} \bmod \mathrm{V}, \operatorname{gcd}(\mathrm{V}, \mathrm{R}, \mathrm{W})$. CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

Lists

> $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$
> [a,b,c] can also be written [a,b,c|[]] or [a, b| [c]] or [a| [b, c]]
> $[\mathrm{H} \mid \mathrm{T}]=[\mathrm{a}, \mathrm{b}, \mathrm{c}]$
> $\mathrm{H}=\mathrm{a}, \mathrm{T}=[\mathrm{b}, \mathrm{c}]$
> $[\mathrm{a} \mid \mathrm{T}]=[\mathrm{H}, \mathrm{b}, \mathrm{c}]$
> $\mathrm{T}=[\mathrm{b}, \mathrm{c}], \mathrm{H}=\mathrm{a}$
> $[\mathrm{H}, \mathrm{T}]$ is syntactic sugar for . (H, T) (. is cons)
$9 \quad$ CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

Important

Queries are yes/fail rather than yes/no

No means the system can not prove it, not that is necessarily false Prolog:

Order of clauses top-to-bottom
Order of goals left-to-right
Always depth-first search

Actual code examples

> ancestor
$>$ links
> append

Prolog Search Tree

```
1 a(X,Y) :- p(X,Z),a(Z,Y)
```

1 a(X,Y) :- p(X,Z),a(Z,Y)
2a(X,X).
3 p(amy,bob).
Depth-first search strategy
Problem:
a(X,Y) :- a(Z,Y), p(X,Z)
goes into an infinite loop
ORDER MATTERS

```

```

12 CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria

