
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

CS 330 Lecture 3

� Outline

� Quickly finish last lecture

� Brief overview of semantics

� Intro to functional programming

� Assignment I

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

EBNF

� <statement-list> := { <statement> }

� <st-list> := <empty>
 | <statement>; <st-list>

� Basically shorthands and metasymbols for
commonly used CFG structures

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Syntax chart
term

+

expr

factor

*

term

(expr)
factor

number

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Parsing

� Recognizer, parser

� shift-reduce or bottom-up parsers

� top-down

� recursive decent parsing

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Names and attributes

� const int n = 5;

� name n

� type attribute = const int

� value attribute = 5

� double f(int n) {.....}

� name f

� type attribute = function of 1 int argument that
returns a double

� body attribute = the actual code

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Binding

� Associate attribute to a name

� Static binding

� Translation

� Linking

� Loading

� Dynamic binding

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

Let's think about
adding variables to Moo

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

Symbol Table
or Environment

� Function that expresses the bindings of
attributes to names

� Compilers – Symbol Table

� Interpreters – Environment

� Variable dictionary

� Insert

� Lookup

� Delete

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

Scope

� Region of program where a binding is
maintained

� Let's draw some symbol tables

� Static and dynamic scoping

� Name resolution and overloading

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Functional Languages

� Black box view

� Function y=f(x) f: X->Y

� domain X, range Y

� x = independent variable, y = dependent
variable

� partial vs total function

� Function definition, application

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Functional Languages

� Scheme, ML, Haskell

� AI, prototyping, proof-systems

� Advantages

� Uniform view of programs as functions

� Automatic memory management

� Great flexibility, conciseness of notation and
simple semantics

� Drawback (used to be)

� Inefficiency
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

Then why people don't use them

� Persistence of established technology

� More abstract and mathematical

� Object-oriented programming mirrors
everyday experience so for simple programs
it is easier (that's why it doesn't work very
well :-))

� Less libraries although they are catching up

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria13

Side-effects – the enemy

� In pure functional language there are no
assignments only bindings.

� Referential transparency

� Function that its value depends only on the
values of its arguments

� Value semantics

� Functions are first class citizens

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria14

Assignment 1

� Postfix calculator for rational number

� 1|2 + 3|2 = 5|2

� Postfix (reverse Polish)

� 1|2 3|2 +

� More details on the web page

� Any language you want

� Write for someone to read

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria15

Next week

� Introduction to SML with emphasis on
learning important concepts in
Programming Languages

