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CS 330 Lecture 3

 

 

� Outline

� Quickly finish last lecture

� Brief overview of semantics 

� Intro to functional programming 

� Assignment I 
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EBNF

� <statement-list> := { <statement> } 

� <st-list> := <empty>                                                  
                   |  <statement>; <st-list>

� Basically shorthands and metasymbols for 
commonly used CFG structures
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Syntax chart
term

+

expr

factor

*

term

(  expr     )
factor

number
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Parsing 

� Recognizer, parser

� shift-reduce or bottom-up parsers

� top-down 

� recursive decent parsing
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Names and attributes

� const int n = 5;

� name n 

� type attribute = const int

� value attribute = 5

� double f(int n) {.....} 

� name f 

� type attribute = function of 1 int argument that 
returns a double 

� body attribute = the actual code
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Binding

� Associate attribute to a name 

� Static binding 

� Translation

� Linking 

� Loading

� Dynamic binding 
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Let's think about 
adding variables to Moo
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Symbol Table 
or Environment

� Function that expresses the bindings of 
attributes to names

� Compilers – Symbol Table

� Interpreters – Environment 

� Variable dictionary

� Insert

� Lookup 

� Delete 
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Scope

� Region of program where a binding is 
maintained

� Let's draw some symbol tables 

� Static and dynamic scoping 

� Name resolution and overloading 
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Functional Languages

� Black box view 

� Function y=f(x)     f: X->Y

� domain  X, range Y 

� x  = independent variable, y = dependent 
variable 

� partial vs total function 

� Function definition, application
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Functional Languages

� Scheme, ML, Haskell 

� AI, prototyping, proof-systems

� Advantages

� Uniform view of programs as functions

� Automatic memory management 

� Great flexibility, conciseness of notation and 
simple semantics 

� Drawback (used to be) 

� Inefficiency
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Then why people don't use them

� Persistence of established technology 

� More abstract and mathematical 

� Object-oriented programming mirrors 
everyday experience so for simple programs 
it is easier (that's why it doesn't work very 
well :-))

� Less libraries although they are catching up
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Side-effects – the enemy

� In pure functional language there are no 
assignments only bindings. 

� Referential transparency 

� Function that its value depends only on the 
values of its arguments 

� Value semantics 

� Functions are first class citizens 
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Assignment 1

� Postfix calculator for rational number

� 1|2 + 3|2 = 5|2 

� Postfix (reverse Polish) 

� 1|2 3|2 + 

� More details on the web page

� Any language you want

� Write for someone to read
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Next week

� Introduction to SML  with emphasis on 
learning important concepts in 
Programming Languages 


