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Lecture 29

� Logic programming 

� Origins: automatic deduction systems, theorem 
 provers 

� Basic idea: computation can be viewed as a 
kind of proof 

� Prolog (1970s)

� 1981 Japan's fifth generation project 
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Overview 

� Programs in functional and imperative 
languages are mappings (many to one) 

� Logic programms are relations (many to 
many) 
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Append

� Relation append is a set of tuples of form 
(X,Y<Z) where Z consists of the elements of 
Z followed by the elements of Y. 

([a],[b],[a,b]) is in relation append 
([a],[b], [] ) is not in relation append 
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First-order predicate calculus

�  Constants : numbers/names

� Predicates  : functions that are true or false 

� Functions   : non-boolean values 

� Variables     : unspecified quantities

� Connectives : and, or, not, implication -> 

� Quantifiers   : for all, there exists 
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Logical statements
In English: 
A horse is a mammal
A human is a mammal 
Mammals have four legs and no arms, or two legs and two arms
A horse has no arms 
A human has arms 

In FOPC: 
mammal(horse).
mammal(human).
for all x, mammal(x) -> 

legs(x,4) and arms(x,0) or legs(x,2) and arms(x,2) 
arms(horse,0). 
not arms(human,0). 
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Inference rule 

� Infer: legs(horse,4). 

� Axioms, theorems proved by inference 

(a -> b) and (b->c) 
-----------------------

a->c 

A logical programming language is a
notational system for writing logical 
statements together with specific algorithms
for implementing inference rules 
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How does it work ? 

 
mammal(horse).
mammal(human).
for all x, mammal(x) -> 

legs(x,4) and arms(x,0) or legs(x,2) and arms(x,2) 
arms(horse,0). 
not arms(human,0). 

Facts: 

Query: there exists y, legs(human, y) ? 

Answer: yes: y = 2 

Deductive: 
Specify properties of solution
and find it without specifying 
exactly how 
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Horn Clauses 

� Horn clauses

� a
1
 and a

2
 and a

3 
and .... a

n
 -> b 

� body implies head 

� Can express most, but not all, logical 
statements 
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An example
x is a grandparent of y if x is the parent of 
someone who is the parent of y. 

English: 

First-order predicate calculus: 
for all x, for all y, (there exists z, parent(x,z) and parent(z,y) 
-> grandparent(x,y). 

Horn clause: 
parent(x,z) and parent(z,y) -> grandparent(x,y) 
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Procedural interpretation

� b <- a
1
 and a

2
 and a

3
 .... and a

n

� viewed as a procedure for obtaining b 

� sort(x,y) <- permutations(x,y) and sorted(y) 

gcd(u,0,u). 
gcd(u,v,w) <- not zero(v), gcd(v, u mod v, w). 
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Resolution and Unification
(how queries are expressed) 

� a <- a
1
 ..... a

n
 

� b <- b
1
 ..... b

m

� If bi matches a then we can infer the clause: 

� b <- b
1
, ..., b

i-1
, a

1
, ... , a

n
, b

i+1
 .... , b

m
. 
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An example
Facts and rules:
legs(x,2) <- mammal(x), arms(x,2).
legs(x,4) <- mammal(x), arms(x,0). 
mammal(horse).
arms(horse,0).
Resolution: 

legs(x,4) <- mammal(x), arms(x,0), legs(horse,4). 
Unification: 

legs(horse,4) <- mammal(horse), arms(horse,0), legs(horse,4) 
    <- mammal(horse), arms(horse,0).

Resolution 
mammal(horse) <- mammal(hosre), arms(horse,0). 

   <- arms(horse,0). 
arms(horse,0)    <-  arms(horse,0). 

  <- 

Query: 
<- legs(horse,4). 

Initial query is true 
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Prolog

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y). 
ancestor(X,X). 
parent(amy,bob). 

Order can be important: 
ancestor(x,bob). 

If left to right then  x is amy 
If right to left then  x is bob 

ISO Prolog based on Edinburgh Prolog (de facto standard today) 
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Actual code example 
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Queries

Queries are yes/fail rather than yes/no
No means I can not prove it  


