
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

Lecture 29

� Logic programming

� Origins: automatic deduction systems, theorem
 provers

� Basic idea: computation can be viewed as a
kind of proof

� Prolog (1970s)

� 1981 Japan's fifth generation project

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Overview

� Programs in functional and imperative
languages are mappings (many to one)

� Logic programms are relations (many to
many)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Append

� Relation append is a set of tuples of form
(X,Y<Z) where Z consists of the elements of
Z followed by the elements of Y.

([a],[b],[a,b]) is in relation append
([a],[b], []) is not in relation append

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

First-order predicate calculus

� Constants : numbers/names

� Predicates : functions that are true or false

� Functions : non-boolean values

� Variables : unspecified quantities

� Connectives : and, or, not, implication ->

� Quantifiers : for all, there exists

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Logical statements
In English:
A horse is a mammal
A human is a mammal
Mammals have four legs and no arms, or two legs and two arms
A horse has no arms
A human has arms

In FOPC:
mammal(horse).
mammal(human).
for all x, mammal(x) ->

legs(x,4) and arms(x,0) or legs(x,2) and arms(x,2)
arms(horse,0).
not arms(human,0).

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Inference rule

� Infer: legs(horse,4).

� Axioms, theorems proved by inference

(a -> b) and (b->c)

a->c

A logical programming language is a
notational system for writing logical
statements together with specific algorithms
for implementing inference rules

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

How does it work ?

mammal(horse).
mammal(human).
for all x, mammal(x) ->

legs(x,4) and arms(x,0) or legs(x,2) and arms(x,2)
arms(horse,0).
not arms(human,0).

Facts:

Query: there exists y, legs(human, y) ?

Answer: yes: y = 2

Deductive:
Specify properties of solution
and find it without specifying
exactly how

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

Horn Clauses

� Horn clauses

� a
1
 and a

2
 and a

3
and a

n
 -> b

� body implies head

� Can express most, but not all, logical
statements

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

An example
x is a grandparent of y if x is the parent of
someone who is the parent of y.

English:

First-order predicate calculus:
for all x, for all y, (there exists z, parent(x,z) and parent(z,y)
-> grandparent(x,y).

Horn clause:
parent(x,z) and parent(z,y) -> grandparent(x,y)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Procedural interpretation

� b <- a
1
 and a

2
 and a

3
 and a

n

� viewed as a procedure for obtaining b

� sort(x,y) <- permutations(x,y) and sorted(y)

gcd(u,0,u).
gcd(u,v,w) <- not zero(v), gcd(v, u mod v, w).

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Resolution and Unification
(how queries are expressed)

� a <- a
1
 a

n

� b <- b
1
 b

m

� If bi matches a then we can infer the clause:

� b <- b
1
, ..., b

i-1
, a

1
, ... , a

n
, b

i+1
 , b

m
.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

An example
Facts and rules:
legs(x,2) <- mammal(x), arms(x,2).
legs(x,4) <- mammal(x), arms(x,0).
mammal(horse).
arms(horse,0).
Resolution:

legs(x,4) <- mammal(x), arms(x,0), legs(horse,4).
Unification:

legs(horse,4) <- mammal(horse), arms(horse,0), legs(horse,4)
 <- mammal(horse), arms(horse,0).

Resolution
mammal(horse) <- mammal(hosre), arms(horse,0).

 <- arms(horse,0).
arms(horse,0) <- arms(horse,0).

 <-

Query:
<- legs(horse,4).

Initial query is true

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria13

Prolog

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
ancestor(X,X).
parent(amy,bob).

Order can be important:
ancestor(x,bob).

If left to right then x is amy
If right to left then x is bob

ISO Prolog based on Edinburgh Prolog (de facto standard today)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria14

Actual code example

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria15

Queries

Queries are yes/fail rather than yes/no
No means I can not prove it

