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Lecture 22

� Louden Chapters 7,8 

� Control
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Expressions and Statements

� Expression = returns a value and produces 
no side effect   

� (1+2)

� Statement = doesn't return a value but is 
executed for it's sideeffects   

� print(5)

� In many languages the distinction is blurry 

� Similar to functions vs procedures
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Evaluation of expressions

� For “pure” expressions order of evaluation 
of subexpressions doesn't matter

� For side-effects of course it matters 

� Sequence operator in C 

� x = 1; y = 2;

� x = (y+=1, x+=y, x+1)    /* value of rightmost 
expression returned */ 

� After x = 5, y = 3
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Control

� GOTO 

� If-statements 

� Dangling else

� if (e1) if (e2) S1 else S2

� most closely nested rule

� Solution: bracketing keyword

� Ada – if “brackets” with  end if 

� Algol68 – if “brackets” with fi
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Switch statement in C

switch (x-1) 
{

case 0: y=0;
                  z=2;
                  break;
      case 2: 
      case 3:

case 4:
y=3;
z =1;
break;

      default: 
break;

}

Swith statement “falls through” 
be careful about forgeting break
statements 
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Loops

while (e) S;

Syntactic sugar: 

do S while (e);
= 
S;
while (e) S;

break     : exit loop immediately
continue: skip remainder of loop and 

    start again 

All computer games: 

while(1) 
{

if (....) break;
}
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Exception Handling

� Exception raised or thrown 

� Exception handler “handles” or “catches” an 
exception 

� Initial motivation: handling graceful 
hardware interupts/problems

� Motivation today: libraries can detect errors 
but in many cases the handling needs to be 
done by the user 
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Exceptions

� Languages with exceptions

� C++, Java, Ada, ML, CLISP

� Languages without exceptions

� C, Scheme, Smalltalk
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Propagating the exception

� Call unwinding (try to find handler in closest 
block (subexpression) propagate upwards

� Where to continue execution ? 

� resumption model 

� termination model (easier to implement and 
has better semantics, resumption can be 
simulated) 

� Significant run-time overhead 

� typically no cost when no exception
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Procedures and environments

� functions vs procedures similar to 
expressions vs statements 

� Initially as a way to split compilation

� Fortran: static entity without recursion

� Algol60, C: recursion

� LISP and functional languages: functions are 
first class citizens
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Procedure definition and 
activation

// C++ code
void intswap(int&, int&);    // specification

void intswap(int& x, int& y)  // specification
{
    int t = x;    // body 
    x = y;        // body 
    y = t;         // body 
}

intswap(a,b);                       // activation

callee
caller
formal parameters
actual parameters
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Procedure Semantics

� Activation record = memory allocated for 
one activation of a procedure 

� Communication with the outside world 
through arguments and non-local 
references 
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An example in C
int x;
void B(void)
{ int i;
   i = x / 2;
   ... } 

void A(void) 
{ int x,y;
   ...
   x = y * 10;
   B();
}

main() { A(); } 

x

x

y

i

Global environment (defining 
environment of B)

Activation record of A (calling 
environment of B)
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A possibility ?

� Do everything with argument passing 

� works ok for variables 

� what about constants and functions ? 

� Closed form

� strive for it 

� Closure = code of a function together with a 
representation of the defining environment 
(used to resolve all outstanding nonlocal 
references) 
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Parameter Passing Mechanisms

� Pass-by-value

� Pass by reference

� Pass by value-result

� Pass by Name (delayed evaluation) 
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Pass-by-value
Replace all parameters with their values
(however values can be changed using pointers)

void init_p (int *p)   // the value is the pointer
{ *p = 0; } 
int init_ptr(int *p) 
{ p = (int *) malloc(sizeof(int)); }      // will be ignored

Java:
void append_1(Vector v)    // works
{ v.addElement(new Integer(1)); } 

void make_new (Vector v) 
{ v = new Vector(); }              // will be ignored
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Pass by reference

	 Parameter becomes an alias for the 
argument – changes are reflected outside 
(default in Fortran) 

void inc(int& x) // C++
{ x++; } 

procedure inc(var x: integer); // Pascal 
begin 
      x := x +1;
end; 

// C simulation
void inc(int *x)
{ (*x)++;}
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Pass by value result

	 Similar to pass-by-reference but no aliasing 
(copy-in, copy-out) 

void p(int x, int y) 
{ 
    x++;
    y++;
} 

main()
{ int a = 1;
   p(a,a);
} 

pseudo-C notation real C has 
only pass-by-value

pass-by-reference result = 3
pass-by-value-result = 2
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Pass-by name and Delayed 
evaluation

Argument is not evaluated until it's actual use in the called procedure
- the “name” textual representation at the point of call, replace the name 
of the parameter. 

Weird semantics in the presence of side effects 
Works nicely in Haskell which is a pure functional language 
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Procedure Environments, 
Activations and Allocation

COMMON

Activaion 
record of main

Activaion 
record of S1

local variables

parameters

return address

Fortran
static 
evnironment
no recursion or
nested procedures
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Stack-Based Runtime 

Activation 
record of main

Activaion 
record of q

Activation 
record of p

Environment Pointer
all local variables are given 
as offsets from the EP 

control
link

control
link

control link

return address

passed 
parameters

local variables
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Nested procedures


 C and Fortran no nested procedures

� all non-local references global (easy to find) 


 Nested procedures (Pascal, Ada, Modula-2)


 Following the control links results in 
dynamic scoping rather than lexical 


 Additional field called access link : link to 
lexical or defining environment 


 closure <ep, ip> 
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Maximum flexibility


 Procedures are first class values: they can be 
created at will 


 Stack-based environment impossible 


 Basically have to store full environment and 
code (closure) for everything (ML, Scheme, 
LISP) 


 Automatic reclamation of storage

� Reference counting 

� Garbage collection
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Dynamic Memory Management


 Never deallocate 

� Large memory requirement


 Maintaing free space 

� list of free blocks – coalescing, fragmentation 
(done with disk drives too) 


 Reference counting  (eager)


 Mark and sweep


 Generational garbage collection
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Mark and sweep

� Lazy: Allocator runs out of space

� First pass: Follow all pointers recursively 
and mark everything reachable (extra bit) 

� Second pass: Move all unreferenced cells 
back to free list 

� Problem: processing delays 
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Generational garbage collection

� Spread cost more evenly

� Allocated objects that survive long enough 
are simply copied to permanent space and 
never get reallocated 

� Only newer storage allocations need to be 
searched 


