
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

Lecture 22

� Louden Chapters 7,8

� Control

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Expressions and Statements

� Expression = returns a value and produces
no side effect

� (1+2)

� Statement = doesn't return a value but is
executed for it's sideeffects

� print(5)

� In many languages the distinction is blurry

� Similar to functions vs procedures

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Evaluation of expressions

� For “pure” expressions order of evaluation
of subexpressions doesn't matter

� For side-effects of course it matters

� Sequence operator in C

� x = 1; y = 2;

� x = (y+=1, x+=y, x+1) /* value of rightmost
expression returned */

� After x = 5, y = 3

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Control

� GOTO

� If-statements

� Dangling else

� if (e1) if (e2) S1 else S2

� most closely nested rule

� Solution: bracketing keyword

� Ada – if “brackets” with end if

� Algol68 – if “brackets” with fi

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Switch statement in C

switch (x-1)
{

case 0: y=0;
 z=2;
 break;
 case 2:
 case 3:

case 4:
y=3;
z =1;
break;

 default:
break;

}

Swith statement “falls through”
be careful about forgeting break
statements

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Loops

while (e) S;

Syntactic sugar:

do S while (e);
=
S;
while (e) S;

break : exit loop immediately
continue: skip remainder of loop and

 start again

All computer games:

while(1)
{

if (....) break;
}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

Exception Handling

� Exception raised or thrown

� Exception handler “handles” or “catches” an
exception

� Initial motivation: handling graceful
hardware interupts/problems

� Motivation today: libraries can detect errors
but in many cases the handling needs to be
done by the user

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

Exceptions

� Languages with exceptions

� C++, Java, Ada, ML, CLISP

� Languages without exceptions

� C, Scheme, Smalltalk

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

Propagating the exception

� Call unwinding (try to find handler in closest
block (subexpression) propagate upwards

� Where to continue execution ?

� resumption model

� termination model (easier to implement and
has better semantics, resumption can be
simulated)

� Significant run-time overhead

� typically no cost when no exception

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Procedures and environments

� functions vs procedures similar to
expressions vs statements

� Initially as a way to split compilation

� Fortran: static entity without recursion

� Algol60, C: recursion

� LISP and functional languages: functions are
first class citizens

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Procedure definition and
activation

// C++ code
void intswap(int&, int&); // specification

void intswap(int& x, int& y) // specification
{
 int t = x; // body
 x = y; // body
 y = t; // body
}

intswap(a,b); // activation

callee
caller
formal parameters
actual parameters

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

Procedure Semantics

� Activation record = memory allocated for
one activation of a procedure

� Communication with the outside world
through arguments and non-local
references

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria13

An example in C
int x;
void B(void)
{ int i;
 i = x / 2;
 ... }

void A(void)
{ int x,y;
 ...
 x = y * 10;
 B();
}

main() { A(); }

x

x

y

i

Global environment (defining
environment of B)

Activation record of A (calling
environment of B)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria14

A possibility ?

� Do everything with argument passing

� works ok for variables

� what about constants and functions ?

� Closed form

� strive for it

� Closure = code of a function together with a
representation of the defining environment
(used to resolve all outstanding nonlocal
references)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria15

Parameter Passing Mechanisms

� Pass-by-value

� Pass by reference

� Pass by value-result

� Pass by Name (delayed evaluation)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria16

Pass-by-value
Replace all parameters with their values
(however values can be changed using pointers)

void init_p (int *p) // the value is the pointer
{ *p = 0; }
int init_ptr(int *p)
{ p = (int *) malloc(sizeof(int)); } // will be ignored

Java:
void append_1(Vector v) // works
{ v.addElement(new Integer(1)); }

void make_new (Vector v)
{ v = new Vector(); } // will be ignored

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria17

Pass by reference

	 Parameter becomes an alias for the
argument – changes are reflected outside
(default in Fortran)

void inc(int& x) // C++
{ x++; }

procedure inc(var x: integer); // Pascal
begin
 x := x +1;
end;

// C simulation
void inc(int *x)
{ (*x)++;}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria18

Pass by value result

	 Similar to pass-by-reference but no aliasing
(copy-in, copy-out)

void p(int x, int y)
{
 x++;
 y++;
}

main()
{ int a = 1;
 p(a,a);
}

pseudo-C notation real C has
only pass-by-value

pass-by-reference result = 3
pass-by-value-result = 2

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria19

Pass-by name and Delayed
evaluation

Argument is not evaluated until it's actual use in the called procedure
- the “name” textual representation at the point of call, replace the name
of the parameter.

Weird semantics in the presence of side effects
Works nicely in Haskell which is a pure functional language

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria20

Procedure Environments,
Activations and Allocation

COMMON

Activaion
record of main

Activaion
record of S1

local variables

parameters

return address

Fortran
static
evnironment
no recursion or
nested procedures

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria21

Stack-Based Runtime

Activation
record of main

Activaion
record of q

Activation
record of p

Environment Pointer
all local variables are given
as offsets from the EP

control
link

control
link

control link

return address

passed
parameters

local variables

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria22

Nested procedures

 C and Fortran no nested procedures

� all non-local references global (easy to find)

 Nested procedures (Pascal, Ada, Modula-2)

 Following the control links results in
dynamic scoping rather than lexical

 Additional field called access link : link to
lexical or defining environment

 closure <ep, ip>

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria23

Maximum flexibility

 Procedures are first class values: they can be
created at will

 Stack-based environment impossible

 Basically have to store full environment and
code (closure) for everything (ML, Scheme,
LISP)

 Automatic reclamation of storage

� Reference counting

� Garbage collection
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria24

Dynamic Memory Management

 Never deallocate

� Large memory requirement

 Maintaing free space

� list of free blocks – coalescing, fragmentation
(done with disk drives too)

 Reference counting (eager)

 Mark and sweep

 Generational garbage collection

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria25

Mark and sweep

� Lazy: Allocator runs out of space

� First pass: Follow all pointers recursively
and mark everything reachable (extra bit)

� Second pass: Move all unreferenced cells
back to free list

� Problem: processing delays

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria26

Generational garbage collection

� Spread cost more evenly

� Allocated objects that survive long enough
are simply copied to permanent space and
never get reallocated

� Only newer storage allocations need to be
searched

