
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

CS 330 Lecture 14

� Outline

� Call-by-value and Call-by-need (lazy
evaluation)

� Tail recursion

� Efficiency

� Infinite data structures

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Two simple functions

� fun sqr(x) = x * x

� fun zero(x) = 0;

� When a function is called, the argument is
substituted for the function's formal
parameter in the body

� Evaluation rule: expressions have multiple
function calls – when and how many times
is the argument evaluated

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Evaluation in ML: call-by-value

� Simple expressions: constants, variables,
function calles and conditional expressions

� ML's evaluation rule:

� To compute the value of f(E), first compute the
value of expression E then substitute in f

� sqr(sqr(sqr(2))) -> sqr(sqr(2x2)) ->
sqr(sqr(4)) -> sqr(4x4) -> sqr(16) -> 16 * 16
=> 256

� what about zero(sqr(sqr(sqr(2)))) ?
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Evaluation of
recursive functions

� fun fact = if n = 0 then 1 else n * fact(n-1)

fact(4) -> 4 * fact(4-1)
 -> 4 * fact(3)
 -> 4 * (3 * fact(3-1))
 -> 4 * (3 * (2 * fact(2-1)))
 -> 4 * (3 * (2 * (1 * fact(1-1))))
 -> 4 * (3 * (2 * (1 * fact(0)))))
 -> 4 * (3 * (2 * (1 * 1)))
 -> 4 * (3 * (2 * 1))
 -> 4 * (3 * 2)
 -> 4 * 6
 -> 24

This seems inefficient.
The larger number the
more numbers wait to
be multiplied.
Can we do better ?

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Tail-recursive factorial

� Associative law 4 * (3 * (fact(2)) = 12 * fact(2)

� fun facti (n,p) = if n=0 then p else facti(n-1, n *p)

� tail recursive = the result of recursive call is
returned immediately without modification

facti(4,1) -> facti(4-1, 4x1)
 -> facti(3, 4)
 -> facti(2, 12)
 -> facti(2-1, 2 *12)
 -> facti(1-1, 1 * 24)
 -> facti(0, 24)
 -> 24

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Special role of conditional
expressions

� Conditional expressions (if – then – else,
andalso, orelse) are not functions

� fun cond(p,x,y) = if p then x else y;

� fun badf n = cond(n=0, 1, n*badf(n-1));

� Every call to badf runs forever why ?

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

Call-by-name

� What if we give functions their arguments as
expressions, not values ?

� Call-by-name rule: to compute the value of
f(E), substitute E immediately into the body
of f. Then compute the value of the resulting
expression

� zero(sqr(sqr(sqr(2)))) is immediately 0

� However observe what happens in:
sqr(sqr(sqr(2))) = sqr(sqr(2)) * sqr(sqr(2))

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

Call-by-need – Lazy evaluation

� Like call-by-name but ensure that each
argument is evaluated at most once

� Pointer structure – Directed graph of
functions and arguments

� Graph reduction

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

Graph reduction of
sqr(sqr(sqr 2)))

sqr

sqr

sqr

2

*

sqr

sqr

2

*

*

sqr

2

*

*

*

2

*

*

4

* **

16
256

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Comparison of strict and lazy
evaluation

� Call-by-need does the least possible
evaluation but requires much book-
keeeping

� Sometimes lazy evaluation saves a lot of
spaces; sometimes it wastes space

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Space leak with lazy evaluation
for facti

facti(4,i) -> facti(4-1, 4 *1)
 -> facti(3-1, 3 * (4 * 1))
 -> facti(2-1, 2 * (3 * (4 * 1)))
 -> facti(1-1, 1 * (2 * (3 * (4 * 1))))
 -> 1 * (2 * (3 * (4 * 1)))
....
 -> 24

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

Haskell

� www.haskell.org

� Pure functional language with lazy
evaluation

� Lazy lists = elements are not evaluated until
their values are needed by the rest of the
program

� All data structures in Haskell are Lazy

� As an exercise let's do infite lists in SML

