
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

CS 330 Lecture 1

� Outline

� Course administration

� History of programming languages

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Course administration

� Reading email is required

� Everything will be on the web page (if
anything missing PLEASE email me)

� Emphasis on work not inspiration

� Pace yourself (1-2 hr / lecture)

� Grading, copying

� Oral presentation random sampling policy

� Open book exam

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

A quote to think about
In CACM “The next 1000 yrs”, Vol 44 (3) with topics
such as Digital Immortality, Virtual Beings, Cyborgs etc.

“Computing central challenge, “How not to make a mess of it” has not
been met. On the contrary, most of our systems are much more
complicated than can be considered healthy, and are too messy and
chaotic to be used in comfort and confidence. The average customer of
the computing industry has been served so poorly that he expects his
system to crash all the time, and we witness a massive worlwide
distribution of bug-ridden software for which we should be deeply ashamed.“
- E. Dijkstra

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Programming
o
l
languages

C
C++
Java
Lisp
Perl
Python

Any others ?

The only way to learn a programming language is by writing
programs in it. (B.Kernighan & D. Ritchie)

The tools we use have a profound (and devious!) influence on our thinking
habits, and, therefore, on our thinking abilities. (E. Dijkstra)

The more original a discovery the more obvious it seems
afterwards (Arthur Koestler)

Making the simple complicated is commonplace; making the complicated
awsomely simple, that's creativity (Charles Mingus)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

What is a Programming
Language ?

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

What is a Programming
Language ?

A programming language is a system of notation for describing computations.
A useful programming language must therefore be suited for both
description(i.e., for human writers and readers of programs) and for
computation (i.e., for efficient implementation on computers). But human
beings and computers are so different that it is difficult to find notational
devices that are well suited to the capabilities of both.
- R. Tennant (Principles of Programming Languages, Prentice Hall, 1981)

One doesn't really understand the bones of a language until one has
tried to design one.
- J.R.R Tolkien when asked why spend years designing "High Elvish":

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

History

Fortran 50s
Cobol 50s
Algol 60s
Simula 60s
Lisp 50s

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

Fortran
(FORmula TRANslator)

� John Backus & team in 1954

� Goals: scientific computing, efficiency

� Important concepts

� High level programming language

� Translator (what we call compiler)

� Machine-independent programs

� Floating-point numbers
We did not regard language design as a difficult problem, merely a simple
prelude to the real problem: designing a compiler that could produce efficient
programs. J. Backus

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

Fortran (95) Code example

�� �� � �� �� �	
 	

� � �
 � �
� �
� � �	 � 	
 �
 �	 � � �	 ��
 �� � 	 �
	 � � � � �� �� �	 � � � �� �	
 	 �

�
 �	 �

�
 � �
� �
 � ��

� ��

 � � � 	 �	 � ��
� �
 � � �

� � ��
� �
� �
	 � � �

� �	 �
 �
 �
 � � � � ��

 � � � 	 �

�
� �
� �
 � � � �
 	 � ��
 �� � 	 �
 	 �

� � � �
 � � � �� �� 	 � � � �	 ��

 � � � 	 �

�

�
 !� "# "$ % !

� & �� � � � �	 �� �� 	 � � � �	
� �
 � � � � � 	 � �� � �	
 �� � � � 	 � �� �� 	 �

�� &' � (�
) � � �	
 � �	
� �
 � � � � � �	 �� �	
 	 �
)

� � � � (�
� �

�� &' � (�
� �
�

)
 � � �	 �� �� 	 � � � �	
� �
 � ��
)

� *� �� � � 	 � �	 ��
 �� �	 �
 	 � � � � �� �� �	 � � � �	 �� �	
 	 �

�
 	 � # � + (�
 (
� � ((,

�� �� �	 - # � + . !� + / (�
 (
� � ((!

� �

 � � � �	 �� �� 	 � � � � �	
� �
 � � - �
 �	 �
 � � � /
� � �	 ��
 �� �	 �
 	 �

- �0 � � /
�

� � � � � �	 �� �� �	 - � � �
 � � � /
�

�� &' � (�
) & � � �� �	
 	 � �
� �
 � �)

�
� �
�

)
� � �	 ��
 �� � 	 �
 	 �

 �)
�

1 �
 	 � �
) � � �
 � � �� �� �	
 �)

� �� �� �	 �
)

�
)

2 � � �

�' �

Consistently separating words by spaces became a general custom about the
tenth century A.D., and lasted until about 1957, when FORTRAN abandoned the
practice — Sun FORTRAN Reference Manual .

FORTRAN is not a flower but a weed — it is
 hardy, occasionally blooms, and
 grows in every computer." — A.J. Perlis.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Cobol
(COmmon Business
Oriented Language)

� Grace Hopper 1950s designed Flowmatic
which led to Cobol in 1959

� Business applications

� Record structure

� Separation of data structures from execution

� Emphasis on readability but VERY wordy

� Versatile formatting

3 “I had a running compiler and nobody would touch it.
They said computers could only do arithmetic”

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Cobol code
example

4 56 7 58 9: ;6 < 8 : => 7 ? <: 6 6 ?

@A 6 B 7 @ < @ ; > 7 @ 8 B A @C @ 5 @8 BDE : 8 F : > =G @A D > H HI J K > L MA NO J PQ RD> 9 7S 8 : D = N H TQ I P ;U VW T P Q L DX 9O I O K TI > ; ; 6 E 7 Q L M A @ 5 EY > Z [I \]O K U Q H HI J K Q O K V MI L K \I H U \ M

X ^ \U _ K TI V O I \ Q L M M NO J P Q R O U _I U ^ K TI ^ NI P MO D > PO U O TU `O TU `

X K TI > ; ; 6 E 7 _Q R]I VO I M KU W I K K TI O RO KI _ M Q KI Q L M K N _I DX 7 TI Z Z Z Z = = A A N L ? > ; ;6 E 7 ; V \ \I L KA Q KI < : 8 = A > 76 Z Z Z Z = =A A D ?

X NO Q ^U \ _Q K H U _ _Q L M K TQ K I LO V \I O K TQ K K TI MQ KI H U L K Q N LO Q

X a M N W N K RI Q \ D @ ^ LU K V O I Mb K TI RI Q \ O V J J P NI M] R K TI O RO KI _ ` N P P

X U L P R H U L KQ N L K `U M N W N K O ` T N H T _Q R H Q VO I Q J \U] PI _ N L K TI RI Q \ cd d d DA > 7> A @ C @ 5 @8 BDe8 : f @ B F G 5 7 8 : > F 6 56 ; 7 @8 BDd g 5 K V MI L K A I K Q N PO Dd c 5 K V MI L K @ M E @ ;h ij k Dd c 5 K V MI L K BQ _I Dd l 5 V \ LQ _I E @ ; m in k Dd l @ L N K N Q PO E @ ; m mDd c ;U V \O I ;U MI E @ ; m i a k Dd c FI L MI \ E @ ; m DX Z Z = =A A

d g ; V \ \I L K A Q KI Dd c ; V \ \I L K ZI Q \ E @ ;h i a k Dd c ; V \ \I L K =U L K T E @ ;h h Dd c ; V \ \I L K A Q R E @ ;h h DX Z ZA A A

d g A Q R8 ^ ZI Q \ Dd c < @ Y Y 6 : E @ ;h i a k Dd c ZI Q \A Q R E @ ;h i l k DX S S = = 5 5O O O o 5 p gd d

d g ; V \ \I L K 7 N _I Dd c ; V \ \I L K S U V \ E @ ;h h Dd c ; V \ \I L K = N L V KI E @ ;h h Dd c < @ Y Y 6 : E @ ;h i a k DE : 8 ; 6 A 9: 6 A @ C @ 5 @8 BDqI W N LDA @ 5 E Y > Z ? 6 L KI \ O K V MI L K M I K Q N PO VO N LW KI _ J PQ KI]I PU ` ? DA @ 5 E Y > Z ? 6 L KI \ G @A b 5 V \ L Q _I b @ L N K N Q PO b ;U V \O I ;U MI b FI L MI \ ?

A @ 5 E Y > Z ? 5 5 5 5 5 5 5 B B B B B B B B @ @ ; ; ; ; F ? D> ; ; 6 E 7 5 K V MI L K A I K Q N P O D> ; ; 6 E 7 ; V \ \I L K A Q KI < : 8 = A > 76 Z Z Z Z = =A A D> ; ; 6 E 7 A Q R8 ^ ZI Q \ < : 8 = A > Z Z Z Z ZA A A D> ; ; 6 E 7 ; V \ \I L K 7 N _I < : 8 = 7 @ =6 DA @ 5 E Y > Z ? BQ _I NO ?b @ L N K NQ PO 5 E > ; 6 5 V \ LQ _I DA @ 5 E Y > Z ? A Q KI NO ? ; V \ \I L K A Q R 5 E > ; 6 ; V \ \ I L K =U L K T 5 E > ; 6 ; V \ \I L K ZI Q \ DA @ 5 E Y > Z ? 7U MQ R NO MQ R ? ZI Q \A Q R ? U ^ K TI RI Q \ ? DA @ 5 E Y > Z ? 7 TI K N _I NO ? ; V \ \I L K S U V \ ?r ? ; V \ \I L K = N L V KI D5 78 E : 9 B D

The use of COBOL
cripples the mind;
it's teaching should,
therefore, be regarded
as a criminal offence
-E.Dijkstra

COBOL is for morons
-E.Dijkstra

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

Algol

� Designed by international committee as a
universal language

� Nested structure of environments & control

� E-BNF (Backus Naur Form) syntax
specification

� Never really used except for publishing
algorithms

� Huge influence on future languages

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria13

Algol 68 minority report
 We regard the current Report on Algorithmic Language ALGOL 68 as the fruit of
an effort to apply a methodology for language definition to a newly designed
programming language. We regard the effort as an experiment and professional
honesty compels us to state that in our considered opinion we judge the
experiment to be a failure in both respects.

The failure of the description methodology is most readily demonstrated by the
sheer size of the Report in which, as stated on many occasions by the authors,
"every word and every symbol matters" and by the extreme difficulty of
achieving correctness. (Dijkstra, Hoare and others)

No proper program contains an indication which as an operator-applied
occurrence identifies an operator-defining occurrence which as an indication-
applied occurrence identifies an indication-defining occurrence different from

the one identified by the given indication as an indication-applied occurrence.
 - ALGOL 68 Report

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria14

Algol code example

� � � �� �� �� �	
� 	 � � � � � �
 �
 � �
 � �� � � �

� � � � �
�� � � � � 	 ��

�� � � � � � � � � �

� � � ��
	 � � � � 	 	 � � � � � � �� � � � �

	 � � �
 � �� � �� �

�� � � � � 	 � �

 � � � ! �

"
	 � � �
 � � � � �� � � � � �

� � � �� 	 � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � " � � �# ! � �� � $ � � � � �
 �

�� �

� � � �

"
	 � � �
 � � � � �� � � � � �

 � � �
 � � % � � � � � � � �

� �� �
 � � � � �

&	 � � � �� � � � � � � �

� � �

� � �

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria15

Lisp
(List Processing)

� John McCarthy in 1960

� Code and data are S-Expressions (lists)

� Simple syntax – very flexible and powerful

� Garbage collection

� Lot's of silly parentheses

� No types

� :-) Lisp interpreter written in Lisp

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria16

Lisp code examples

(defun factorial (n)
 (cond ((= n 0) 1)
 (t (* n (factorial (1- n))))
)
)

(defun average (numbers)
 (if (null numbers)
 (error "Average of the empty list is
undefined.")
 (/ (reduce #'+ numbers)
 (length numbers))))

 (defun tax-bracket (income)
 "Determine what percent tax should be paid
for this income."
 (cond ((< income 10000.00) 0.00)
 ((< income 30000.00) 0.20)
 ((< income 50000.00) 0.25)
 ((< income 70000.00) 0.30)
 (t 0.35)))

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria17

Lisp interpreter in Lisp
67 lines of code using only:

 quote, atom, eq, cons,car, cdr, cond

 (defun eval. (e a)
 (cond
 ((atom e) (assoc. e a))
 ((atom (car e))
 (cond
 ((eq (car e) 'quote) (cadr e))
 ((eq (car e) 'atom) (atom (eval. (cadr e) a)))
 ((eq (car e) 'eq) (eq (eval. (cadr e) a)
 (eval. (caddr e) a)))
 ((eq (car e) 'car) (car (eval. (cadr e) a)))
 ((eq (car e) 'cdr) (cdr (eval. (cadr e) a)))
 ((eq (car e) 'cons) (cons (eval. (cadr e) a)
 (eval. (caddr e) a)))
 ((eq (car e) 'cond) (evcon. (cdr e) a))
 ('t (eval. (cons (assoc. (car e) a)
 (cdr e))
 a))))
 ((eq (caar e) 'label)
 (eval. (cons (caddar e) (cdr e))
 (cons (list. (cadar e) (car e)) a)))
 ((eq (caar e) 'lambda)
 (eval. (caddar e)
 (append. (pair. (cadar e) (evlis. (cdr e) a))
 a)))))

(defun evcon. (c a)
 (cond ((eval. (caar c) a)
 (eval. (cadar c) a))
 ('t (evcon. (cdr c) a))))

(defun evlis. (m a)
 (cond ((null. m) '())
 ('t (cons (eval. (car m) a)
 (evlis. (cdr m) a)))))

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria18

Simula

� Ole Johan Dahl & Karl Nygaard 1962-1967 in
Olso, Norway

� Discrete event simulator

� First object-oriented language

� Classes, objects, inheritance, dynamic
binding

� Influenced design of C++, Java etc

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria19

Simula code example

class Shape(x, y); integer x; integer y;
 virtual: procedure draw;
 begin
 comment -- get the x & y components for the object --;
 integer procedure getX;
 getX := x;
 integer procedure getY;
 getY := y;
 comment -- set the x & y coordinates for the object --;
 integer procedure setX(newx); integer newx;
 x := newx;
 integer procedure setY(newy); integer newy;
 y := newy;
 comment -- move the x & y position of the object --;
 procedure moveTo(newx, newy); integer newx; integer newy;
 begin
 setX(newx);
 setY(newy);
 end moveTo;
 procedure rMoveTo(deltax, deltay); integer deltax; integer
deltay;
 begin
 setX(deltax + getX);
 setY(deltay + getY);
 end moveTo;
 end Shape;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria20

Things to talk/think about

� Why study programming languages

� Persistance of established technology

� Interpreters, compilers, environments

� Compile-time, run time

� Writing, building, growing a program

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria21

Paradigms

� Imperative

� Sequence of statements, variables

� Functional

� Functions, expressions and bindings

� Logic

� Symbolic logic

� “Object oriented”

� Lot's of little computers (smalltalk vision)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria22

Euclid's algorithm

� Greatest common divisor gcd(8,18) = ?,
gcd(36, 15) = ?

� Take the remainder of dividing 36 by 15 = 6

� Take the remainder of dividing 15 by 6 = 3

� Take the remainder of dividing 6 by 3 = 0

� 3 is the gcd

� gcd(a,b) if b = 0 then a else gcd(b, a mod b)

� What about gcd(15,36) ?

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria23

Imperative GCD (Ada)

Procedure gcd(u, v: integer, x: out integer) is
y, t, z: integer;
begin
 z := u;
 y := v;
 loop
 exit when y =0;
 t := y;
 y:= z mod y;
 z := t;
 end loop;
 x:= z;
end gcd;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria24

Object-oriented GCD
 public class IntWithGcd
{ private int value;
 public IntWithGcd(int val) {value = val;}
 public intValue() { return value;}
 public int gcd(int v)
 {
 int z = value;
 int y = v;
 while (y != 0)
 {
 int t = y;
 y = z % y;
 z = t;
 }
 return z;
}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria25

Functional gcd (Scheme)

(define gcd (u v)
 (if (=v 0) u
 (gcd v (modulo u v))))

Logic programming gcd (Prolog)

gcd(U,V,U) :- V = 0.
gcd(U,V,X) :- not (V=0),
 Y is U mod V,
 gcd (V, Y, X)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria26

More things to think about

� Efficiency of execution

� Efficiency of translation + complexity of
compiler

� Programming efficiency

� Orthogonality, Generality, Simplicity ,
Uniformity

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria27

Next lecture:
Syntax & Semantics

� Form & meaning

� Check the course web page for additional
readings and suggested exercises (not
graded)

