
Precise Construction and Control of Implicit Fillets in the BlobTree

Herbert Grasberger∗, Andrea Weidlich†, Alexander Wilkie‡, Brian Wyvill§
∗University of Victoria, Victoria, Canada, grassi@cs.uvic.ca

†Vienna University of Technology, Vienna, Austria, weidlich@cg.tuwien.ac.at
‡Charles University, Prague, Czech Republic, wilkie@cgg.mff.cuni.cz

§University of Victoria, Victoria, Canada, blob@cs.uvic.ca

Abstract—Skeletal implicit modelling systems have been
used to design models of both organic and man-made
structures, however existing systems lack convenient and
accurate methods for users to de ne llets when building
prototype engineering models.

In this work we extend the methodology and skeletal
primitives found in the BlobTree and introduce an improved
method for modelling llets. This is done by interpolat-
ing between hard-edged and soft-edged representations of
a primitive, using the eld to control the interpolation.
Blending planes are introduced as a way of providing user
control for this interpolation. The new methods are expressed
as blend operators between two objects and can thus be
implemented as a new node in the BlobTree. In addition we
introduce an ef cient methodology for modelling hard edged
primitives.

Keywords-Computer Graphics, implicit modelling, CSG,
llets, the BlobTree

I. INTRODUCTION

The roots of our proposed technique lie in the desire to

have an intuitive method for the modelling of fillets i.e.

smooth transitions between adjoining surfaces that appear

in a wide variety of modelling contexts. In Constructive

Solid Geometry (CSG) models, which are traditionally

an exclusive domain of hard edged shape representations,

such smooth transitions occur in many real-world objects

and can be put into one of the following groups:

1) There are fillets with strong functional constraints,

such as the blend surface in the area where an

aircraft wing is joined to the fuselage.

2) There are what can be termed aesthetic blends, such

as the smooth transition between the stem and the

cup of a wine glass, that are introduced on purpose

by the designer of an object.

3) Finally, there are fillets that are mere side-effects of

a manufacturing process, such as welding beads.

While other distinctions are possible, this categorization

is useful when viewing the problem from a computer

graphics modelling perspective. It is worth noting that

blending surfaces of the first kind have a form that is

dependent on complex external factors, and are therefore

something that is usually not modeled by hand. In such

cases, one would e.g. seek to import a CAD model

that is the result of numerical optimizations, or similar

processes. However, fillets of the second and third type

share the notable characteristic that their exact shape (in a

numerical sense) is often not important, not even for highly

accurate predictive image synthesis. They are typically

more numerous in an average scene than the first type

(welding seams come to mind here), so a reliable and

expressive method for placing them makes for a more

efficient modelling workflow

The work of this paper is to present a new approach

for easy creation of fillets of the second and third type,

but as we will see later, it can also be used for modelling

purposes beyond simple filleting. The proposed technique

is named Constructive Solid Blobs, since we use the

BlobTree [1] as the underlying data structure, but still

retain the widely known CSG modelling paradigm, as first

described in [2]. Figure 1 shows a comparison of roughly

similar models that were created with a traditional CSG

approach (only hard edges), the BlobTree (without hard-

edged primitives), and finally our approach (a healthy, i.e.

semantically sensible, mix of both).

The main contribution of this work is the application

of the simple blending technique defined by the Blob-

Tree to the definition of fillets. In addition the BlobTree

uses inefficient complex primitives requiring many field

evaluations to define simple hard-edged objects such as a

cube. We replace these by simple and efficient hard-edged

primitives.

The remainder of the paper is structured as follows:

we first give an overview on related work and the back-

ground of the BlobTree. In the main part we describe our

extension to the BlobTree in detail, present some results

modeled by our approach, and conclude this paper by

giving an outlook to future work.

II. RELATED WORK

A. Other modelling Methods

In the 1980s methods for filleting arbitrary surfaces

were developed by [3], who specified a set of desirable

properties a blend has to fulfill:

1) tangency with the base surfaces to be blended,

2) curves of tangency with the base surfaces which

are a constant distant (sic) from the alternate base

surface,

3) cross section profiles defined and controlled by the

’shape’ of the profile curve and the distance of the

tangency curves from the alternate base surface.

The methods described in that paper generate a new

surface that meets the above conditions, which can be a

complex problem in certain cases. According to [3], such

a blend between two surfaces can, in some circumstances,

2010 Shape Modeling International Conference

978-0-7695-4072-6/10 $26.00 © 2010 IEEE

DOI 10.1109/SMI.2010.37

151

(a) CSG (b) BlobTree (c) CSB

Figure 1: Comparison of a tap modeled with different modelling approaches. Only the different representations of the

single primitives and the operators are changed to allow for comparable results. In comparison to CSG, our approach

provides mathematically simpler blend operators while still allowing for hard-edged objects as primitives.

yield surfaces of very high order, and can involve poly-

nomial equations up to degree 23. Which is one reason

why the general applicability of these results is limited:

blends between blend surfaces (which is not an exotic

configuration; consider two fillet surfaces, such as welding

beads, meeting in a corner) become an almost intractable

problem due to the high order of the resulting surfaces.

Although a possible solution is discussed, it is still quite

complicated to compute.

The approach described in [4] uses cross sections cre-

ated by parametric curves in order to control the shape of

the blend. It allows blends with continuity starting from

C0 up till C2, depending on the curve used for the cross

section.

Another approach for constructing blends was proposed

in [5]. The main constraint there was the fact that only

blends between objects defined by between Function Rep-

resentations (FReps) [6] were considered. Using these

techniques, is possible to robustly blend all objects that

can be created by FReps. In [7] a methodology to control

the influence region of the blend and to create round edges

was introduced.

In many cases where fillets have to be inserted, blends

with a circular cross section are required, as discussed

in [8] or [9]. Such blends are closely related to the

boundaries of canal surfaces [10], which are created by

a rolling ball that remains in tangential contact to the

involved surfaces. In the approach described in [11], a

ball with constant radius is used to create this surface,

while other approaches [12] use a ball with varying radius.

However, such canal surfaces can be of a very high order

as well, which considerably complicates their evaluation

in a renderer due to numerical stability issues, and the high

computational cost associated with the necessary interval

arithmetic operations.

B. The BlobTree

The BlobTree extended existing skeletal implicit sur-

face modelling techniques [13] by introducing a unified

structure in which nodes could represent arbitrary blends

between objects as well as Boolean operations and warp-

ing at local and global level. For visualisation the tree may

be traversed and a field-value and a gradient returned for

an arbitrary point in space.

One reason why it makes sense to use the BlobTree as

an underlying data structure for an interactive modelling

application is that it can easily and quickly be converted to

a number of more conventional data structures for display

purposes. For example, [14], [15], [16] propose methods

for converting an implicit surface into a triangle-mesh that

has an optimised, non-uniform triangle distribution. Other

approaches allow for voxelization [17] of the generated

surface, or to evaluate the BlobTree with common ray

casting approaches, such as interval analysis [18], or ray

marching. More recent approaches show how the BlobTree

can be used in interactive modelling systems as well [19].

Another reason to use the BlobTree is that it also

includes a scene graph and is thus a very compact descrip-

tion of a complex model. Since the data structure takes up

considerably less storage than using triangular meshes it

could be used for collaborative design across a network.

There have been some attempts to convert models

into representations that could potentially be used in the

BlobTree. [20] proposed an approach that would convert

CSG objects into volume data stored in voxels, which

could potentially be used with the BlobTree but it has

many shortcomings due to the restricted resolution of the

finite space. [21] in comparison added the functionality

to combine the BlobTree with mesh surfaces and point

sets. This approach does permit hard edged objects but

has the added complexity of having to deal with a different

representation. In our work we propose a method that stays

within the framework of using only implicit primitives and

152

from which a simple user interface can be built.

C. Skeletal Primitives

Most of the primitives used in the BlobTree are built

from skeletal primitives which are incorporated in many

implicit modelling software packages such as BlobTree.net

[22] or ShapeShop [23]. They are ideally suited to quickly

prototype shapes of arbitrary topology [13]. The use of

skeletal primitives in the above publications demonstrate

that skeletal primitives can lead to a simple and intuitive

user modelling methodology.

The basic building block of a skeletal primitive is a

skeleton S. Usually the skeleton itself is a very simple

shape such as a point or a line, but also more complex

skeletons can be used.

To create a skeletal primitive the entire distance-field

has to be computed as described in [24]. This is done

by computing the distance to the skeleton for each point

in the volume encapsulating the final shape. The distance

function is defined as

DS : R3 → R. (1)

As a result the distance field is a volume of scalar values

which is not bounded as the distance itself can be infinitely

large.

In the next step the distance field DS has to be modified

by a field function to be bound to a finite range. This field

function is defined as G : R → R and as a result the

skeletal primitive LS,G is formed by applying this function

to the given distance Ds. Usually it is a function that maps

the distances to the range [0, 1].
The implicit function of one skeletal primitive is

fLS,G
(p) = G(DS(p)). (2)

The most widely used field function was developed by

[25] as a simplification of the original Soft Objects field

function called the Wyvill field function. It maps a distance

d to the field value G(d) by the following formula

G(d) =

(
1− d2

r2

)3

. (3)

In this formula r is a constant value that states the distance

where the field value equals zero. Figure 2 shows a plot

of the function. The main advantage of this field function

is that it is C2 continuous.

After applying the field function to the distance field

we call the resulting field the potential field. One further

step needs to be done to actually compute the surface of

the shape. A classification which part of the finite space

is inside and which part is outside has to be done.

This can be seen as an extension to the traditional space

partition approach described in [2] because the binary

approach is still here, but there is also additional distance

information which can be used later on.

By defining an iso-value c it is possible to construct the

surface of the shape and classify the surrounding space as

mentioned above. Usually the iso-value c = 0.5 is chosen

0.2 0.4 0.6 0.8 1.0
distance

0.2

0.4

0.6

0.8

1.0
field value

Figure 2: The plot of the commonly used Wyvill field

function.

because it provides surfaces that lie exactly in the middle

of the finite space defined by the field values.

D. Blend Operators

When a Boolean operation is performed on such blobby

primitives, it is actually performed on the field-values f .

This makes it possible to go beyond the classical Boolean

operators, and define general blend operators that e.g.

create smooth transitions between shapes.

The most common operator that creates a smooth transi-

tion between several values is called the summation blend
[13]

fR(p) =
∑
n∈N

fn(p) (4)

where the resulting field-value at a point p in space

fR(p) is the sum of the field-values of all involved objects.

This example offers only very basic functionality, but it

does exhibit one property typical for most blend operators:

its results are no longer necessarily in the range [0, 1] of

the original potential fields involved in the blend. While

seemingly problematic, this does not affect the usefulness

of such operators; unlike the original skeleton distance

field, they are still bounded (just not to the [0, 1] range),

and one can visualize iso-surfaces within them.

More complex operators, such as e.g. those described

in [26], [27] or the blending functions that are based on

R-functions [28], [6], [29], allow for a fine control on the

resulting blend shape. By using them it is possible to create

complex blended shapes similar to the ones proposed for

CSG in [4]. Something that is also worth noting here is

that so far, no-one appears to have used an interpolation
of the involved field values as a blending operator.

III. OUR APPROACH - CONSTRUCTIVE SOLID BLOBS

Our proposed Constructive Solid Blob approach to solve

the filleting problem in CSG makes use of the BlobTree,

and the different blending possibilities between blobby

objects that exist there. In this section, we propose the idea

of separation planes as blending tools in general, explain

how this can be used to blend between two potential fields

generated by objects, define fillets on CSG objects using

this approach and define the extended potential fields for

153

our new skeletal primitives. Finally we show how these

primitives can be combined with the separation plane

approach to create interpolations between objects

A. Separation Planes as Blending Tools

While any number of schemes to control the blend of two

potential fields are possible, we propose the comparatively

simple concept of using a separation plane for the task.

As the name implies, this is a plane which separates the

two fields. On one side of such a plane the first field is

active, and in the region on the other side of the plane, the

other field will be the prominent one as shown in figure 3.

The user positions the plane shown in yellow.

A hard separation between the two fields would result

in discontinuities at the separation plane, and would not

be a particularly useful technique, however, if the new

field is derived by interpolating between the two fields in

a well-defined area around the separation plane, a smooth

transition is created. To bound the volume used in the

interpolation and give the user a convenient control, a

blend region is computed by using a normal distance from

the separation plane specified by the user. This amounts to

the implicit definition of two additional planes that limit

the blend range, and figure 3 shows a sketch of such an

arrangement. The separation plane, the tool to control

such a blend, is shown in orange. The extent of the blend
range is shown in blue; here, it is defined by two planes

parallel to the separation plane. The skeletons for the two

parts of the shape are usually not the same size. However,

the relative size of the skeletons can be easily precomputed

so that the side faces of the two versions of the object are

exactly aligned, and that only the edges change from hard

to blobby. While all sorts of interpolation modalities can

be used, we found that symmetrical interpolation around

the separation plane yields useful and good-looking re-

sults. In such a configuration, the separation plane contains

a cross-section that is an exact average of the two forms

as can be seen in figure 3b. Here i refers to the full

interpolation region, d is the user set interpolation distance

and n refers to the normal vector of the set plane. The way

that the interpolation is done to avoid undesired surface

behavior such as discontinuities is described in great detail

in section III-D. All the user has to do to control the

interpolation is to set the plane and the distance d in

order to achieve the desired result. Since planes are infinite

regions it might occur that the user wants to limit the

range of one separation plane. This can be done by using a

Boolean combination of several planes to gain the desired

result.

B. Blending Between Different Potential Fields

Within a standard BlobTree, it is already common prac-

tice to perform blending operations between the potential

fields of different skeletons; this allows the aggregation of

complex compound objects. However, even if hard-edged

primitives are made available in a BlobTree (e.g. via the

extended potential fields discussed in section III-C), a ba-

sic problem remains: on blending rounded, blobby objects

Separation plane

Interpolation distance

(a) Separation plane in 3D

n

i
d

(b) Separation plane in 2D

Figure 3: A hybrid soft/hard edged cube.

fillets can be specified between adjoining objects almost

for free, but unfortunately with their rounded corners, do

not necessarily resemble machine parts. Conversely, the

much more useful hard-edged objects proposed below do

not blend nicely, not even when they are actually Blob-

Tree primitives. Neither do we want generalised blending

between them in the first place; we want fillets exactly in

those locations where we place them, and nowhere else.

The objectives are:

• To create fillets between different objects .

• Additionally we want smooth transitions between a

hard edged and a soft edge for a single object.

The method presented in [21] overcomes this problem

by mixing the field-value based BlobTree with meshes

and point clouds. We have taken the view that a unified

modelling approach based on the BlobTree leads to a

resolution independent representation and pushes a poly-

gonised approximation down the production pipeline until

the end.

In the following sections we describe how the idea of

the separating planes can achieve both of these objectives

and provide the user with an easy to use and accurate

way of building a fillet. By achieving the first objective

the second case can be done by co-locating both a hard

edged and soft edged version of the same object and

interpolating.

C. Defining Extended Potential Fields

As mentioned earlier, it is possible to construct a

potential field around any hard edged object contour.

A 2D example of this can be seen in figure 4. However,

in its original form, the BlobTree lacks objects with

sharp edges, such as cubes, cylinders and cones. BlobTree

versions of these objects always have rounded corners,

even though the skeletons used for them have hard edges.

It has to be mentioned that it is possible to create e.g.

a hard edged cube by subtracting 6 blobby cubes in the

right order from a sphere, but this involves 7 objects and

6 Boolean operations instead of creating it directly with

one primitive. A similar approach was proposed by [30]

where 6 planes are blended together to create a cube with

154

almost hard edges. For various reasons, which probably

include the lack of a clear incentive to do so up to now, the

incorporation of hard-edged objects as genuine BlobTree

primitives does not seem to have been attempted so far.

Figure 4: A cut through the extended potential field for a

cube skeleton. The difference to normal BlobTree potential

fields is that the inside of the skeleton also has field

values < 1. For visualization purposes, the function is

color-coded (green outside the skeleton, red inside), and

modulated with a wave function to show its structure. One

can clearly see that for outer iso-values, the resulting shape

becomes more and more rounded, the further one gets

from the basic shape. In the interior field, on the other

hand, iso-lines define shapes with creases. Image created

with BlobTree.net [22].

Theoretically it would be possible to use an iso-value of

1 to render those primitives directly from an unmodified

BlobTree representation. However, the entire inside of

the skeleton is mapped to 1 in classical BlobTree usage,

though, so that algorithms for the detection of iso-surfaces

run into problems in this case. Which is why we use

extended potential fields that also contain valid field-

values inside the skeleton to obtain hard-edged shapes;

see figure 4 for an example. The shapes defined by iso-

values in such an extended field usually contain creases

for values inside the skeleton (the red part of the figure),

which stands in contrast to the smooth outside field (shown

in green).
In principle, this idea can be applied to any hard-edged

CSG primitive, but for our initial work, we concentrated

on what arguably are the three most useful basic CSG

primitives with edges: the cube, the cylinder and the cone.

In the following paragraphs, we describe how to define

such extended potential fields for these shapes; additional

primitives can be included in an analogous fashion.
To generate the potential field for an object, first its

distance field has to be created from the corresponding

blobby primitive with the skeleton at the same size as

the desired object. Equation 6 shows this for the case of

the cube. The desired surface is now at the distance field

value zero, positive outside and zero inside. To make this

compatible with the BlobTree the next step is to add the

distance at which equation 3 yields the iso-value c. We

call this the iso-distance Diso, i.e.

c = G(Diso) = (1− D2
iso

r2
)2 (5)

Unfortunately there is a problem when this is done

without modifying the distance field beforehand. If each

value of the current distance field is incremented by the

iso-distance all points inside the skeleton have value c,
which would be a problem for further blending operations.

The desired field is shown in figure 4. In order to fix

those wrong values all distances within the skeleton have

to be replaced by values computed in a different way

than originally as shown e.g. in equation 7. The upcoming

formulas assume a coordinate system that is Z-up, ↑ refers

to the maximum and ↓ the minimum of the given values.

Cube. The distance function for a cube skeleton S
centered at q with three perpendicular arms ax, ay and

az describing the orientation of the three axes of the cube

is:

DS(p) =
√
↑ (0, vx)2+ ↑ (0, vy)2+ ↑ (0, vz)2 (6)

vx = dx − ‖ax‖
vy = dy − ‖ay‖
vz = dz − ‖az‖
dx =

ax(p− q)

‖ax‖
dy =

ay(p− q)

‖ay‖
dz =

az(p− q)

‖az‖
where dx, dy and dz are the distances between q and the

projection of p onto ax, ay and az . They are normalised

to the length of ax, ay and az . To compute the proper

distance for the cube with hard-edges the result of this

distance computation has to be used in the following

formulas :

Dfinal =

{
DS(p)− ↓ (vx, vz, vz) +Diso if con
DS(p) +Diso

(7)

con = DS(p) = 0 ∧ dx �= Diso ∧ dy �= Diso ∧
dz �= Diso

A diagram of this computation is shown in figure

5a. The different branches in the computation of Dfinal

make sure, that we just modify the inside of the cube

skeleton before subtracting the iso-distance Diso. In the

computation for DS(p) this area results in distance values

of zero, since they are within the skeleton boundary. The

resulting Dfinal is not continuous within the skeleton but

it is not intended to be used for blending purposes. Only

the blobby version should be used for that.

Cylinder. The approach for computing the distance

within the cylinder skeleton is similar to the approach

used in computing the distance for the cube. The distance

155

(a) Cube and cylinder distance computation

(b) Cone distance computation

Figure 5: Illustration of the algorithm to compute the

distance for the inside region of either the cube or the

cylinder (figure 5a) and the cone (figure 5b) in 2D. For

the current point (red circle) first determine in which

symmetry area the current point lies (see grey area in the

middle image). The shorter of the two distances (blue and

orange lines) is chosen (orange). The dashed lines in the

right image show where discontinuities in the potential

field are created by this algorithm.

function for a cylinder skeleton S with radius r, centred

at q having the normal n and height h is:

DS(p) =
√
a2 + b2

a = ↑ (0, c)
b =

{ ↑ (0, e) if d > 0
↓ (0, e) if d ≤ 0

c = ‖p− q‖ − e− r

d =

{
e− n

2 if e > 0
e+ n

2 if e ≤ 0

e = (p− q)n

To compute the proper distance for the cylinder with hard-

edges the result of this distance computation has to be used

in the following formulas:

Dfinal =

{
DS(p)− ↓ (0, d) +Diso if con
DS(p) +Diso

con = DS(p) = 0 ∧ ‖(p− q)x‖ �= Diso ∧
‖(p− q)y‖ �= Diso ∧ ‖(p− q)z‖ �= Diso ∧√
‖(p− q)x‖2 + ‖(p− q)y‖2 �= Diso

The basic principle is similar to the one shown in figure

5a. Similar to the computation of Dfinal for the cube

here the branch makes sure that p lies within the skeleton.

We do this in the last part of cond by comparing the

distance of the point projected onto the XY plane with

the iso-distance Diso the additional part in the if statement

makes sure that the current point lies within the circle of

the cylinder base when projected onto the XY plane.

Cone. For the cone skeleton the distance computation is

a little bit more complicated (see figure 5b). The distance

function for a cone skeleton S with the tip at point q,

having normal n, height h and radius r at the base is:

DS(p) =

⎧⎨
⎩
‖p1 − s‖ if s > ‖t‖
‖p1 − s t‖ if ‖t‖ > 0
‖p1‖ if s ≤ 0

s =
(p1)t

‖t‖2
t = h n+

r u

‖u‖
u = p1 − n((p1)n)

p1 = (p− q)

To compute the proper distance for the cone with hard-

edges the result of this distance computation has to be used

in the upcoming formulas. The cone is projected onto the

XZ plane forming a triangle with inradius w.

Dfinal =

{
Dnew +Diso if con
DS(p) +Diso

con = 0 < p1z < 1 ∧
√
p12x + p12y < p1x p1z

Dnew =

{ −(1− p2y)/w Diso if p2y ≥ a
−(‖p2 − c‖)/w Diso

p2 =

(√
p12x + p12y
p1z

)
∈ R

2

a = w p2x − (1− w)

b = (p2x + p2y)/2

c =

(
b

b

)
∈ R

2

By multiplying the result of Dnew by the iso-distance Diso

it is guaranteed that there will not be a resulting distance

Dfinal < 0. Note that p2 and v are two dimensional

vectors, since the computation can be reduced to two

dimensions because of the rotational symmetry.

Other primitives. All of the above computations can

be described as the medial axis transform of an object

as first described in [31]. In our application we use

the medial axis transform to compute the “skeleton of

an implicit skeleton” that is then used to modify the

original distance computation. The extended potential field

of an object can be computed from the the medial axis

transform of the already known implicit skeletons. Most

of the algorithms for computing the medial axis transform

have been described for discrete objects. Algorithms for

computing continuous medial axes can be found in [32],

[33], [34].

D. Shape Interpolation Within the Blend Range

With the separation plane technique described above we

are able to apply blending operations to different potential

fields of the same basic object, placed at the same location,

i.e. we are able to switch between varying intensities of

blobbiness in one and the same shape. Figure 3 shows

one possible result of such an operation. The key to this

is to simply interpolate between the field values of the

156

(a) linear interpolation (b) Hermite interpolation

Figure 6: Comparison between a simple linear interpo-

lation operator, and an interpolation based on cubical

Hermite spline base functions. This image is a close-up

of the top of the blended cone shape shown in figure 10,

with a special BRDF that changes color depending on the

surface normal. In case (a), a discontinuity on the outer

mantle, which starts at the point where the normal hard

edge of the cone top starts to slope downward, and which

runs down the front side of the object, is clearly visible. In

case (b), Hermite interpolation prevents such an unwanted

crease from appearing.

involved representations. From a modelling point of view,

all that has to be done is to define a separation plane and

an interpolation distance.
As noted in section II-B, this is a blending operator that

is not useful for blending between different shapes, and is

therefore not used in normal BlobTree modelling.
The easiest way to define the interpolation blending

operator we use in the region around the separation plane

is in a linear fashion, e.g. by multiplication with a factor

j, as given in equation (8). There, d is the interpolation

distance of the separation plane, and d(p) the distance

between the separation plane and the current point.

j =
(
0.5

d(p)

d
) + 0.5 (8)

The main drawback of this simple operator is that it causes

visible surface discontinuities at the borders of the blend

range. This can be clearly seen in figure 6a, where an

unwanted crease in the cone mantle along the limits of

the blend range is clearly evident.
Since one usually wants a blended object with more than

just C0 continuity at the borders of the blend zone, one

has to use some sort of higher order interpolation instead.

We opted for the third of the four base functions of cubic

Hermite splines [35]. By using the function defined in

equation (9), we weight the factor j used in the linear

interpolation to create a new interpolation factor h.

h(j) = j2
(
3− 2j (9)

This yields an interpolated surface which is C2 continuous

and smooth in the whole blend area, and with the adjoining

surfaces of the two representations.
Figure 6 shows the difference between the linear and the

spline basis function based interpolation. In most cases the

Hermite interpolation is preferable. All the subsequent ex-

amples are rendered using the Hermite based interpolation.

It has to be noted that the Hermite interpolation involves

more floating point operations than the linear interpolation.

Another possibility to blend between the two represen-

tations would be to use the potential field of an altogether

different blobby object to define the [0, 1] interpolation

range, similar to a blending approach described in [7] and

integrated into the BlobTree in [36]. Our approach could

also be used to create entire blends, as described in [12].

All these could also be used together with the BlobTree,

and would yield interesting results in their own right.

E. Defining Fillets With Separation Planes

Figure 7: Use of separation planes to define a fillet region

between hard-edged shapes. The shape of the fillet is

dependent on the chosen blend operator. Only the inter-

polation region is defined by using the planes.

Hybrid shapes like the mixtures between blobby and

hard-edged versions of geometric primitives shown in

figure 10 are a nice extension of the standard BlobTree.

Figure 7 shows an example where two cubes are blended

together with our approach. Each cube has it’s own

separation plane facing the other cube. As a result the

blobby representations which blend well are restricted to

the area between the planes. For blending the objects we

now just use the blobby representation.

By setting the separation plane manually the user can

decide where and how the transition from the hard-edged

representation to the round-edged blobby one takes place.

This transition is independent of the chosen blend operator

since it is just a way to define the region where the

user wants to have the blobby part of the object that has

the capability to blend properly as described above. This

allows for a high number of possible blends between two

objects since there are many different ways that the two

objects can be placed, which blend operator can be chosen

and how the user restricts the object representations using

one or more separation planes.

157

To create a blend as shown above, it is actually

necessary to define a new blend operator which allows

for interpolation between two different blend operators,

for example by reusing our separation plane approach.

Otherwise a simple blend would create bulges on the sides

of the cubes. This image shows the blend just happening

at the above junction of the two shapes whereas on the

opposite side there is the normal CSG-union transition.

This is due to the fact that the normal vectors of the planes

do not point into the area enclosed by the planes at that

connection. It is possible to extend our approach to create

a smooth junction at the opposite side as well by e.g.

defining that when two planes cross, the normal vectors

always are oriented towards the other plane.

Intersection

PlaneInterpolation

Figure 8: The possible structure of a new BlobTree node

incorporating the described separation plane approach.

Figure 8 shows how the described approach can be

implemented as a new BlobTree node. Since there are not

just two shapes involved but also an additional separation

plane the most convenient way will be a ternary node

that connects those three components. When the field-

value for this node is computed it evaluates the field-values

of the two child-shapes and interpolates according to the

algorithm described above.

The modelling workflow to set up the interpolation is

very similar to any other blend node: Two shapes have to

be positioned in the scene ideally at the same position

having the same size. After that the user has to place

the separation plane and set the normal into the direction

where the interpolation should take place and adjust the

interpolation distance to get the desired result. Figure 11

shows an example where the separation plane is used to

smooth just one edge of the cube. The other edges stay

Figure 9: One single edge smoothed by placing a sepa-

ration plane so that it cuts through the cube so that the

normal vector faces the edge.

hard edged until they come into the interpolation region.

By adjusting the interpolation distance it is moreover

possible to get a slight edge in the smooth part as well

depending on the set distance defined as d in equation 8.

With our approach a fillet can be defined in a few simple

steps. First, the separation planes have to be defined; they

specify where the shapes should have hard edges and

where they should have blobby parts. The latter describes

the filleting region of the shape. Afterwards one has to

assign the desired blend operator to the two shapes and

make sure that just the blobby part of the shape is used for

the fillet. This can be done e.g. by using blend operators

as defined in [27] that give the user great control over the

shape of the resulting blend between the objects.

Furthermore the modelling paradigm introduced with

the separation planes can be combined with a general

blend node as well. Since the main objective of a separa-

tion plane is to provide a volume that defines interpolation

values it is not just possible to interpolate between the field

values of objects but it also allows for an interpolation

between the resulting field values of two different blend

operators. This can be used to produce similar modelling

results as achieved using a bounding implicit object [7]

as can be seen in figure 11 at the upper right edge that

smoothly interpolates into the rounded edge. A proper user

study to compare the use of the separation plane to a

bounding object and associated parameters awaits future

work.

IV. RESULTS

The approach we presented in this paper exploits the ad-

vantages of both the blobby representation and traditional

CSG. However, our approach also allows a smooth inter-

polation between blobby and hard edged representations

within an object by simply defining a separation plane.

158

(a) (b)

Figure 10: Interpolation between traditional CSG and

blobby representations for a cube, a cylinder and a cone. In

all examples, the separation plane lies in the (y, z)-plane.

In the left row the interpolation is done only within 0.2

distance from the plane, in the right row the interpolation

is done on the whole size of the shape. The issue with

the edge not appearing to be straight with the cone is the

result of the combination of the used shading model and

the surface created.

Figure 10 shows a change in the representation on three

basic primitives, a cube, a cylinder and a cone. Here the

separation plane is set exactly at the z-axis facing left so

that the left part of the primitive is represented as blobby

object and the right part as traditional CSG primitive.

As it can be seen, a smooth interpolation is performed

between both objects. The hard edges of the CSG objects

gradually become rounder until no hard edges can be seen

anymore. Moreover, by changing the interpolation distance

we are able the change the appearance of the object in an

additional way.

One advantage of this approach is, that the implicit field

at the rounded edge is fully intact and as a result it can be

used in any further blending situation as shown in figure

11.

Such modelling techniques can be used to create realis-

tic complex objects that are very hard or even impossible

to model with traditional CSG or the blend and fillet

operators since complex transitions are involved. Figure

12 (respectively 1c) shows an example of such an object.

The water tap in this image consists of all representations

described in this paper:

1) blobby objects (e.g. the cylinder at the base part of

the handle),

2) traditional CSG objects (e.g. the cube that connects

the two water inlets),

Figure 11: Any object can be blended with the rounded

edge without problems that are the result of field discon-

tinuities.

1

3

2

4

Figure 12: Several close-ups of the water tap CSB mod-

elshown in figure 1 (c). Note the presence of both soft

and hard edges, and the smooth interpolation between both

representations.

3) filleting between blobby and CSG objects (e.g. the

inlets) and

159

4) interpolation between classic CSG and blobby ob-

jects (e.g. the cylinder at the handle).

With traditional CSG it would be very time-consuming

to compute the smooth transitions of the inlets and the

round edges of certain primitives like e.g. the main part of

the tap. On the other side, the hard edge of the cross piece

cannot be created with blobby objects alone. The rendering

time of the CSB model was roughly equal to the rendering

time of the blobby object. In theory some parts of the

model could be constructed with the original BlobTree

as well by creating the hard edged objects with additional

Boolean operations, but this increase in complexity comes

with the cost of higher rendering times since the number

of BlobTree evaluation increases as well.

This example shows that by using our technique it is

possible to achieve the same modelling result as with the

BlobTree but using fewer primitives and Boolean opera-

tions. On the other hand it is still possible to make use of

the mathematically simpler blending operators provided

by the BlobTree compared to special purpose filleting

operations used in CSG. Since only the underlying math

is different from previously known approaches it is still

possible to expose the user to standard user interfaces.

One of the drawbacks of the filleting methods discussed

in section II-A is that they run into troubles when blends

with blends are involved. As it can be seen in figure

13a where the spokes have smooth transitions between

themselves and the outer part of the rim, our approach

is capable of performing such blends since creating these

blends is just a matter of applying the desired operator;

no additional work has to be done.

Of course one could argue that such models could

be created easily using a mesh or subdivision surface

approach. However, figure 13b and 13c clearly illustrates

the advantage of our approach compared to any mesh

approach. By using CSG or blobby objects we are able

to resize and move certain parts of a model without

remodelling the whole object. For example, we resized the

thickness of the spokes by simply widening the cubes the

spokes are made of. The fillets are created automatically

– a mesh approach would require to remodel large parts

of the whole wheel.

The models created for this paper were produced from

a scripting system. Interactive sketch based use of the

BlobTree has already been demonstrated [23] and our

approach does not increase the time complexity for Blob-

Tree traversal. We are currently exploring a sketch based

interface for the BlobTree using our presented approach.

V. CONCLUSIONS AND FUTURE WORK

Modelling with just CSG or the BlobTree has certain

disadvantages which are the lack of rounded edges and
fillets in standard CSG and the lack of hard edges in

standard BlobTree modelling. As the modelling approach

is similar in both methods the work done in this paper

shows how the features of both can be combined into one

approach, namely Constructive Solid Blobs (CSB).

(a)

(b) Thick spoke (c) Thin spoke

Figure 13: The spokes in this model of a car wheel

have sharp corners, but also smooth transitions between

themselves and the outer part of the rim. It can be changed

easily by resizing certain primitives since the fillets are

generated automatically.

CSB is entirely based on the modelling approach of

the BlobTree and extends it to support the shapes that

are different to the standard CSG approach. The shapes

that differ in their representations are extended to create

accurate field values which are currently not continuous

in the inside of the objects. It can be seen that CSB

does not completely change the modelling process of

CSG or the BlobTree as it is just an extension to the

BlobTree. The problem of creating blends or so called

fillets is overcome by using CSB instead of CSG as round

edges and blends are just a matter of summations which

are easier to compute than the higher order equations

described in [3] or the approaches described in [8] or [5].

Moreover CSB enables to define the shape of the transition

by the implemented blend operators.

One major enhancement of CSB would be to create a

continuous potential field for the extended CSG shapes.

160

1: if (DS(p) == 0)∧ (‖dx‖ �= Diso)∧ (‖dy‖ �= Diso)∧
(‖dz‖ �= Diso) then

2: Dfinal ← DS(p) − ↓ (↑ (0, dx−‖ax‖)2, ↑ (0, dy−
‖ay‖)2, ↑ (0, dz − ‖az‖)2) +Diso

3: else
4: Dfinal ← DS(p) +Diso

5: end if

Figure 14: distance computation within the cube skeleton

1: if (DS(p) == 0)∧ (‖px‖ �= Diso)∧ (‖py‖ �= Diso)∧
(‖pz‖ �= Diso) ∧ (

√
p2x + p2y �= Diso) then

2: Dfinal ← DS(p)− ↓
(
√‖p− q‖ − ((p− q) n)2 − r, ‖(p − q)
n‖+ h

2) +Diso

3: else
4: Dfinal ← DS(p) +Diso

5: end if

Figure 15: distance computation within the cylinder skele-

ton

This would enable better blending capabilities of these

objects. As a result it might be possible to use these shapes

even without the presented separation plane approach

in a blending situation. Another issue with the current

implementation is that the round corners of an object have

the same dimensions on the whole shape.

In some modelling situations it might be desired to have

different rounded corners with different radii at the same

object or even corners where the radius changes along

the edge. Something similar was already presented by [7]

with the partial edge blending approach or the rolling ball

approach of [12]. If this approach can be combined with

defining individual edge radii and a continuous field this

would lead to easier application of the introduced approach

combined with a higher flexibility.

Another interesting topic for research will be to give

the user the opportunity to have the positions of the

separation planes computed automatically according to

a chosen blend operator and a certain placement of the

involved shapes.

ACKNOWLEDGMENT

This research is made possible in part by a grant from

the Natural Sciences and Engineering Council of Canada

and the Vienna University of Technology.

APPENDIX

The algorithms for the extended distance computation

have the basic distance DS(p) as an input and compute

the modified distance Dfinal are shown in figures 14, 15

and 16. The distance values within the skeletons are in the

range [0, Diso]. As in the formulas presented throughout

this paper ↑ refers to the maximum and ↓ to the minimum

value of the given ones.

1: if (DS(p) == 0) ∧ (0 < p1z < 1) ∧ (
√

p12x + p12y <

p1z radius) then
2: point2D ← (

√
p12x + p12y, p1z)

3: referencey ← inradius pointx+(1− inradius)
4: if pointy ≥ referencey then
5: Dnew ← − 1−pointy

inradius·Diso

6: else
7: u← pointx+pointy

2
8: footPos← (u, u)
9: Dnew ← −‖point− footPos‖

10: end if
11: Dfinal ← Dnew +Diso

12: else
13: Dfinal ← DS(p) +Diso

14: end if

Figure 16: distance computation within the cone skeleton

REFERENCES

[1] B. Wyvill, A. Guy, and E. Galin, “Extending the CSG tree.
warping, blending and boolean operations in an implicit
surface modeling system,” Computer Graphics Forum,
vol. 18, no. 2, pp. 149–158, Jan 1999.

[2] A. Ricci, “A constructive geometry for computer graphics,”
The Computer Journal, vol. 16, no. 2, pp. 157–160, 1973.

[3] A. Middleditch and K. Sears, “Blend surfaces for set
theoretic volume modelling systems,” SIGGRAPH 85:
Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, Jul 1985.

[4] G. Elber, “Generalized filleting and blending operations
toward functional and decorative applications,” Graphical
Models, vol. 67, no. 3, pp. 189–203, Dec 2005.

[5] V. Adzhiev, R. Cartwright, E. Fausett, A. Ossipov, A. Pasko,
and V. Savchenko, “HyperFun project: a framework for col-
laborative multidimensional F-rep modeling,” Proceedings
of Implicit Surfaces 99, pp. 59–69, Sept. 1999.

[6] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko, “Func-
tion Representation in Geometric Modeling: Concepts,
Implementation and Applications,” The Visual Computer,
vol. 11, no. 8, pp. 429–446, Oct 1995.

[7] G. Pasko, A. Pasko, M. Ikeda, and T. Kunii, “Bounded
Blending Operations,” Proc. of Shape Modeling Interna-
tional 2002, Dec 2002.

[8] J. Rossignac and A. Requicha, “Constant-Radius Blending
in Solid Modeling,” ASME Computers In Mechanical En-
gineering (CIME), vol. 3, pp. 65–73, 1984.

[9] C. Hoffmann and J. Hopcroft, “The potential method for
blending surfaces and corners,” Cornell University, Ithaca,
NY, USA, Tech. Rep., 1985.

[10] M. Peternell and H. Pottmann, “Computing rational
parametrizations of canal surfaces,” Journal of Symbolic
Computation, Dec 1997.

[11] X. Chen and C. Hoffmann, “Trimming and closure of
constrained surfaces,” Purdue University, Tech. Rep., Dec
1993.

161

[12] B. Whited and J. Rossignac, “Relative blending,”
Computer-Aided Design, vol. 41, no. 6, pp. 456–462, May
2009.

[13] J. Bloomenthal, Introduction to Implicit Surfaces. Morgan
Kaufmann, ISBN 1-55860-233-X, 1997, edited by Jules
Bloomenthal With Chandrajit Bajaj, Jim Blinn, Marie-Paule
Cani-Gascuel, Alyn Rockwood, Brian Wyvill, and Geoff
Wyvill.

[14] C. Ho, F. Wu, B. Chen, Y. Chuang, and M. Ouhyoung,
“Cubical marching squares: Adaptive feature preserving
surface extraction from volume data,” Computer Graphics
Forum, vol. 24, no. 3, pp. 537–545, Dec 2005.

[15] K. van Overveld and B. Wyvill, “Shrinkwrap: An efficient
adaptive algorithm for triangulating an iso-surface,” Vis.
Comput., vol. 20, no. 6, pp. 362–379, 2004.

[16] J. Bloomenthal, “Polygonization of Implicit Surfaces,”
Computer Aided Geometric Design, vol. 5, no. 4, pp. 341–
355, 1988.

[17] N. Stolte, “Robust voxelization of surfaces,” State Univer-
sity of New York at Stony Brook, Tech. Rep., Dec 1997.

[18] J. Snyder, “Interval analysis for computer graphics,” SIG-
GRAPH 92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, Jul 1992.

[19] R. Schmidt, B. Wyvill, and E. Galin, “Interactive implicit
modeling with hierarchical spatial caching,” in SMI 05:
Proceedings of the International Conference on Shape
Modeling and Applications 2005. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 104–113.

[20] D. E. Breen, S. Mauch, and R. T. Whitaker, “3d scan
conversion of CSG models into distance volumes,” in VVS
98: Proceedings of the 1998 IEEE symposium on Volume

visualization. New York, NY, USA: ACM, 1998, pp. 7–14.

[21] R. Allegre, E. Galin, R. Chaine, and S. Akkouche, “The hy-
bridtree: mixing skeletal implicit surfaces, triangle meshes,
and point sets in a free-form modeling system,” Graph.
Models, vol. 68, no. 1, pp. 42–64, 2006.

[22] E. de Groot, “Blobtree modelling,” Ph.D. dissertation, The
University of Calgary, 2008.

[23] R. Schmidt, B. Wyvill, M. Costa-Sousa, and J. A. Jorge,
“Shapeshop: Sketch-based solid modeling with the blob-
tree,” in Proc. 2nd Eurographics Workshop on Sketch-based
Interfaces and Modeling, Eurographics. Eurographics,
2005, pp. 53–62, dublin, Ireland, August 2005.

[24] A. Barbier and E. Galin, “Fast distance computation be-
tween a point and cylinders, cones, line-swept spheres and
cone-spheres,” Journal of Graphics, GPU, and Game Tools,
vol. 9, no. 2, pp. 11–19, 2004.

[25] B. Wyvill and G. Wyvill, “Field Functions for Implicit
Surfaces,” The Visual Computer, vol. 5, no. 1-2, pp. 75–82,
1989.

[26] L. Barthe, N. A. Dodgson, M. A. Sabin, B. Wyvill, and
V. Gaildrat, “Two-dimensional potential fields for advanced
implicit modeling operators,” Computer Graphics Forum,
vol. 22, no. 1, pp. 23–34, 2003.

[27] L. Barthe, B. Wyvill, and E. de Groot, “Controllable binary
CSG operators for soft objects,” International Journal of
Shape Modeling, Dec 2004.

[28] V. Shapiro, “Real Functions for Representation of Rigid
Solids,” Computer-Aided Geometric Design, vol. 11, no. 2,
1994.

[29] A. A. Pasko and V. V. Savchenko, “Blending Operations
for the Functionally Based Constructive Geometry,” CSG
94 Set-Theoretic Solid Modeling: Techniques and Applica-
tions, Information Geometers, pp. 151–161, Dec 1998.

[30] L. Barthe, V. Gaildrat, and R. Caubet, “Combining implicit
surfaces with soft blending in a CSG tree,” CSG Conference
Series, pp. 17–31, Apr 1998.

[31] H. Blum, “A Transformation for Extracting New Descrip-
tors of Shape,” in Models for the Perception of Speech
and Visual Form, W. Wathen-Dunn, Ed. Cambridge: MIT
Press, 1967, pp. 362–380.

[32] L. Cao, Z. Jia, and J. Liu, “Computation of medial axis and
offset curves of curved boundaries in planar domains based
on the cesaro’s approach,” Computer Aided Geometric
Design, vol. 26, no. 4, pp. 444 – 454, 2009, geometric
Modeling and Processing 2008, 5th International Confer-
ence on Geometric Modeling and Processing.

[33] E. Remy and E. Thiel, “Exact medial axis with euclidean
distance,” Image and Vision Computing, vol. 23, no. 2, pp.
167 – 175, 2005, discrete Geometry for Computer Imagery.

[34] J.-H. Chuang, C.-H. Tsai, and M.-C. Ko, “Skeletonization
of Three-Dimensional Object Using Generalized Potential
Field,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 11, pp. 1241–1251, 2000.

[35] D. D. Hearn and M. P. Baker, Computer Graphics with
OpenGL. Prentice Hall Professional Technical Reference,
2003.

[36] C. Galbraith, L. Mundermann, and B. Wyvill, “Implicit
Visualization and Inverse Modeling of Growing Trees ,”
Computer Graphics Forum, vol. 23, no. 3, pp. 337–348,
2004.

162

