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Figure 1: The image that garnered the most votes (63) as the most aesthetic.

Abstract
In this work we propose both implicit and parametric curves to represent aesthetic curves inscribed by Voronoi
cells in R2. A user survey was conducted to determine, which class of curves are generally accepted as the more
aesthetic. We present the curves, the survey results, and the implications for future work on simulating sponge like
volumes.
Leave one blank line after the abstract, then add the subject categories according to the ACM Classification Index
(see http://www.acm.org/class/1998/).

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation
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1. Introduction

Given a set of seed-points in the plane, the region around
each seed can be separated from its neighbour by drawing a
line equally distant from both points, giving rise to the fa-
miliar Voronoi diagram. The lines form cells around each
seed-point, known as Voronoi regions. These regions in both
2D and 3D can be used to describe many natural forma-
tions, such as soap bubbles, sponges, crystals or bone cells,
[OBSK00, Kle87], or the distribution of galaxies, [VJM02].
Architects, such as Toyo Ito, Buckminster Fuller or Frei
Otto, took the geometry of the Voronoi cell, as constructive
inspiration for their architecture, [AL06]. In some of these
works, areas have been defined, bounded by a closed convex
curves, which are in turn inscribed inside a Voronoi cell, see
Figure 2. Craig Kaplan, [Kap99], uses the Voronoi digram as
an artistic tool, and applies it to construct interesting tilings
of the plane. In his paper he gives several examples of other
artistic applications.

The current work is a stepping stone towards building aes-
thetic convex curved volumes, inscribed in 3D Voronoi cells.
Since we had a ready access to a 3D volume modelling sys-
tem based on the BlobTree , [WGG99], and we wanted to ex-
plore the empty, curved spaces, subtracted from the Voronoi
cells, we decided to use this skeletal-implicit system. The ap-
proach was to define a suitable, procedural implicit primitive
to represent the curved volumes. The main challenge was to
design a primitive that would generate a suitable aesthetic
volume. Our approach was first to look at the 2D problem,
and use the results of this study to guide the definition of the
3D function.

Although parametric B-splines have been the norm, we
wondered whether inscribed implicit curves would yield
more appealing results. Architectural and art applications
frequently use inscribed parametric B-spline curves, as they
are offered by the available software packages, as can be
seen on various websites: [Bil,Inc,CTEG]. We experimented
with a number of different curve types, both parametrically
and implicitly defined. We narrowed this down to three curve
types, each with a number of parameters that govern their
precise shape within a Voronoi cell. The next step was to
compare the images generated from these different curves,
in an experiment to discover the most aesthetically pleasing
approach.

The rest of the paper is organized as follows: some pre-
vious work about aesthetic curve design, pattern creation,
and evaluation of aesthetics is given in section 2, section 3
provides details of the curves we used and why, section 4
provides details of the user study, section 5 gives the results,
and finally the conclusions and future work gives informa-
tion on what we learned about aesthetic curves and the next
step towards the larger project.

Figure 2: Closed curves inscribed in Voronoi cells.

2. Previous Work

Aesthetic appeal of planar curves has been long stud-
ied in the field of industrial design, where it is usually
called “fairness” [FRSW87]. Fair curves are those where
the curvature changes monotonically or piecewise mono-
tonically [PN77, FRSW87, KNS03]. The monotone pieces
may have linear curvature changes, in which case the curve
is a piecewise clothoid [FRSW87, MS08]. Log-linear dis-
tributions of curvature have also been postulated [Har97,
HYM99, KNS03, Miu06] as both reflecting the beauty of
objects both natural and man-made, including bird’s eggs
and samurai swords [Har97], and of curves drawn by de-
signers in practice [KNS03]. It is possible to adjust paramet-
ric curves to increase fairness [FRSW87, MS08], though we
have less direct control over the shape of implicit curves.

In our application, we are interested in patterns formed
by closed curves rather than individual curves. Wong et
al. [WZS98] articulate the important principles of order, rep-
etition, balance, and conformation to constraints as influ-
encing the appeal of a pattern. The order and repetition of
our patterns are controlled by the Voronoi cells, but the bal-
ance between foreground and background can be adjusted by
changing the curves, and the curves also adhere to greater
or lesser extent to the boundaries of the Voronoi partition.
However, Wong et al. were establishing motivation for their
own pattern generation system rather than attempting to give
a general system for evaluating patterns, and it is difficult to
use these principles to make subtle distinctions between our
patterns.

In evaluating the aesthetic quality of photographs, user
studies – i.e., asking people directly what they think of the
images – has been the norm. Savakis et al. [SEL00] con-
ducted one of the first such studies, attempting to deter-
mine the factors at play in decisions to include or exclude
photographs from photo albums. More recently, Datta et
al. [DJLW06] and Ke et al. [KTJ06] attempted to create au-
tomated photograph rating algorithms, treating user ratings
as ground truth. Such algorithms have had limited success
to date; certainly, they are not yet capable of judging aes-
thetics with the reliability and granularity to replace human
judgement. In our work, we also relied on users’ subjective
evaluation to distinguish between the patterns we created.
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3. The Curves

Our goal is to inscribe into each cell of a Voronoi dia-
gram a closed curve in an “aesthetically pleasing” manner.
It is inherently impossible to turn this condition of “aesthet-
ically pleasing” into exact mathematical conditions on those
curves. The previously mentioned curvature conditions are
not particularly sensible in the presence of inscription con-
straints. However, it seems sensible to at least require such
a curve to be smooth and to bound a convex region. This
region must be contained in the Voronoi cell and should “ap-
proximate it from the inside” for some suitable notion of ap-
proximation.

In our approach we will consider each Voronoi cell in-
dividually and independently of the others. As a matter of
fact we will even ignore the fact that we are dealing with
a Voronoi cell but consider general convex polygons. So let
P be a convex polygon with vertex set p0 , p1 , . . . , pk�1 in
counterclockwise order around P and line � i supporting the
edge pi , pi+1 (with index arithmetic modulo k). Let ni be
the inward unit normal vector of � i and for x �R2 define
di(x) = �x�pi , ni�to be the signed distance of point x to
line � i. We have � i = { x �R2 | di(x) = 0} and P consists of
exactly those points x for which di(x)� 0 for all i.

We will consider two different approaches for inscribing
“nice” curves into P. One produces paratmetric curves, the
other implicit curves.

3.1. Implicit Curve Approach

The initial idea is simple: Produce a function F : R2 � R
that is 0 on the boundary of P and positive in the interior
of P, and as inscribed curve use some level set of F , i.e. a
set Ca = { x �P | F(x) = a} for some appropriately chosen
positive a. With an appropriate choice of F , in particular if
it is smooth and convex over P, the produced curve will be
smooth and convex also.

A natural choice for F appears to be

F(x) = �
0�i<k

di(x) ,

which obviously fulfills the conditions that it is 0 on the
boundary of P and positive in P’s interior. Since F is smooth
over the interior of P we get smooth level set curves Ca for
positive a. But are the curves convex? It turns out they are,
although it need not be the case that F (or its negative) is con-
vex over P’s interior� . A simple trick allows to easily prove

� To see possible non-convexity of F consider its restriction to a
horizontal line x2 = c in the (x1 , x2)-plane. We now have a polyno-
mial of degree k in x1 and in the graph of such a polynomial the arc
connecting two consecutive roots can contain an inflection point and
is then neither convex nor concave.

convexity of the level set curves: Consider f (x) = logF(x).
Then Ca = { x�P | f (x) = loga} and

�f (x) =�log �
0�i<k

di(x) =� �
0�i<k

logdi(x)

is convex since�logdi(x) is convex over the interior of P for
each i and the sum of convex functions is convex. Therefore
each Ca is the level set of a convex function and hence it is
convex. Considering f instead of F in the computation of Ca
has an additional advantage in that f is only defined over the
interior of P whereas F is defined on the entire plane. Thus
Ca = { x�R2 | f (x) = loga} , but { x�R2 | F(x) = a} will in
general also contain curves in other cells of the arrangement
formed by the lines � i. As an aside, the function f (x) is also
known as logarithmic barrier function and plays an impor-
tant role in linear optimization. Figure 3 shows an example
6-sided polygon with level curves of F (or equivalently f )
for three different values of a.

Figure 3: Three example curves.

It is now clear that for each positive a the curve Ca is
smooth and convex and is contained in P, unless a is too
large and Ca is actually empty. Moreover, as a approaches
0 the curve Ca approximates the (non-smooth) boundary of
P arbitrarily closely. How do we choose the parameter a so
as to get a particularly pleasing curve? An easy approach is
to choose inside polygon P a point z through which we wish
the curve Ca to pass. Obviously we then have a = F(z). In
our experiments we automatically produced z by considering
convex combinations � p1 +(1�� )c between the corner p1
and a putative center of c of the polygon, namely the average
of the corners. We ended up using � = 0. 7.,

3.1.1. Generalizations

From a mathematical-aesthetic point of view our approach
has the shortcoming that the approximating curves do not
change continuously as the shape of P changes. For instance,
if you replace a corner of a polygon P by a tiny edge the
shape of P hardly changes however the approximating curve
may change drastically, since the new edge contributes to f
as strongly as all other edges. Figure 4 illustrates this effect
by replacing the leftmost vertex of the polygon of Figure 3
by a short edges.
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Figure 4: Replacing the leftmost vertex by a tiny edge.

A natural way to prevent this effect is to use edge lengths
as weights in the definition of f , resulting in

f (x) = �
0�i<k

� i logdi(x) ,

where � i is the length of the i-th edge. Figures 5 and 6 il-
lustrate how such a weighting prevents undue influences of
short edges.

Figure 5: Taking into account edge lengths.

Figure 6: Replacing the leftmost vertex by a tiny edge does
not affect the curves very much.

Our approach allows other variations also. The goal is to
take level sets of a function that is convex over the interior
of P and is unbounded on the boundary of P. A generic way
to obtain such a function f is to consider

f (x) = �
0�i<k

� ih(di(x)) ,

where h is a real valued function over the reals that is convex
over the positive reals and is unbounded at 0. Examples of
such functions are h(u) =�logu, or h(u) = 1/ ub with b> 0,
or h(u) = 1/ (eu�1). For the purpose of this paper we just
stick with the simple logarithmic case. Figures 7 through 9
show the resulting curves for various choices for h(u). Note

how in the last figure, where h(u) = 1/ u10 the curves appear
to be smooth approximations of offset curves.

Figure 7: h(u) = 1/ u.

Figure 8: h(u) = 1/ u2.

Figure 9: h(u) = 1/ u10.

Let us consider again the general weighted definition

f (x) = �
0�i<k

� ih(di(x)) .

An equivalent definition of f is the following. Let p(t) be
the arc-length normalized parametric representation of the
boundary curve of the polygon P, with 0� t < L, where L is
the length of the boundary. Furthermore, let n(t) be the unit
inward normal vector at point p(t), except for the finitely
many corners of P where the normal is not defined. Then

f (x) =
� L

0
h(�x�p(t), n(t)�)dt . (1)

The argument of h is the distance of point x to the tan-
gent line of P in boundary point p. Note that this definition
does not rely on P being a convex polygon. P could be any
bounded convex region, in particular a region with a bound-
ary containing corners and curved edges, see Figure 10 for
a simple example the region is bounded by a parabolic arc
and two segments. The function f will always be smooth
and convex and can be used to define smooth convex inner
approximations for any such convex region. Also note that
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f is invariant under rigid motion. It also respects scaling,
provided h satisfies the scaling condition that for every con-
stant a > 0 there are constants α > 0 and beta so that for all
u > 0 we have h(au) = αh(u)+ β. Note that this holds for
h(u) =− logu and h(u) = 1/ub.

Finally, note that all our definitions generalize naturally to
R3 and also to higher dimensions.

Figure 10: Inscribed curves in a non-polygonal convex re-
gion.

3.2. Parametric Curve Approach

In the parametric curve approach, the points defining the
convex polygon can be used to build a smooth function of
the form c : R→ R2. We use a degree n B-spline basis and
use the polygon points as control points, thus we can write
the curve as

c(t) =
k+n

∑
i=0

p(i mod k+1) Nn
i (t), t ∈ [0,k+n]. (2)

We use a uniform knot vector, and we repeat the first n con-
trol points at the end of the sum in order to create a closed
curve. The DeBoor Cox algorithm can be used to compute
the basis functions Nn

i (t) with a simple recursive formula.

Spline curves have a number of nice properties. The curve
will be bounded by the convex hull of the control polygon.
Furthermore, given a convex control polygon, the curve it-
self will be convex. The curves are piecewise polynomials,
and Cn−1 at the points between segments. Another property
is that control points only influence the shape of the curve
locally. This is a useful property when editing shapes.

Our control polygons are always convex, and it is inter-
esting to note that higher order B-spline curves are smoother
(despite being represented by polynomials of higher degree),
and likewise these inscribe curves will lie further from the
control polygon than lower order curves as shown in Fig-
ure 11. Unlike the barrier curves in the previous section, this
does not give us a continuous parameter for selecting the
amount of area between the inscribe curve and the polygon,

Figure 11: An example of spline curves of degrees 2, 3, and
4.

Figure 12: An example of spline curves of degrees 2, 3, and
4 where the control polygon involves a small edge.

thus we add a scale parameter. That is, we scale the whole
curve about a centre of the polygon defined by the average of
the control points to increase the space between the inscrib-
ing curve and the boundary. Figure 13 shows curves scaled
at a value of 0.7, which we selected as producing a reason-
ably similar curve boundary separation as the barrier curves
with α set to 0.7.

One disadvantage of B-splines is that adding a short edge
inserts a new point and will have a noticable influence on the
shape of the curve. A short edge of length ε effectively drops
the continuity of the curve by one, and thus, a sequence of
n short edges of length ε will act much like set of superim-
posed control points, causing the piecewise curve to interpo-
late the point with discontinuous derivative (see Figure 12).

While the initial definition of implicit curves in the pre-
vious subsection can be modified to take into account short
edge lengths, a similar modification for spline curves is not
straightforward. The difficulty is that the splines are para-
metric curves defined by control points, while the shape of
the implicit curves is directly a function of the edges. The use
of non-uniform knot vectors and weights to define rational
splines, i.e., NURBS, are well known methods for providing
additional control over the shape of B-spline curves [PT97].
But this does not provide an easy solution to the short edge
problem because weights and knot values are assigned at the
control points. Assigning small weights to two control points

c© The Eurographics Association 2012.
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Figure 13: An example of spline curves of degrees 2, 3, and
4 where the inscribing curves have been scaled by 0.7 about
a centre of the control polygon computed as the average of
the control points.

adjacent to a small edge reduces their influence, but not in
a manner equivalent to removing one of the control points.
Likewise, knot values can be adjusted for edge lengths to
change the region of influence of a control point, but again,
not in a manner that would let us smoothly transition from a
small edge to a single control point.

Figure 14: Comparison of two typical images presented to
the user in survey one.

4. The User Study

Because humans are an integral part of defining what is aes-
thetic, we decided to employ a user study to find the most
aesthetic curves appropriate to the overall objectives of this
research, We started by generating images based on the same
set of Voronoi diagrams, using barrier curves and cubic B-
spline curves as described above.

The objective of the user study was to see if there was a
clear preference for either parametric or implicit curve def-
initions. Two separate studies were undertaken. In the first
we chose 30 pairs of images and asked the user to choose the
most aesthetically pleasing (see Figure 14). The limit of 30
pairs, was the most we could expect without the user becom-
ing too fatigued to make an informed choice or quit the study
early [Zha10]. The second study asked the user to score each
image according to a sliding scale of aesthetic value, using a

Figure 15: A typical image presented to the user in survey
two using the Likert.

Likert scale [CP07] in the range [�3 : +3], (see Figure 15).
In both surveys the order of images was randomized, and
the studies made available on the internet. Over one hundred
responses were garnered for each survey.

In the first study we controlled against random choices by
repeating some A/B pairs as B/A. If the choices were dif-
ferent we would eliminate that user from our statistics, but
in practice this condition did not occur. In the second study
no such test was available, but since the results were fairly
consistent over 100 responses, and also because we simply
wanted to determine whether the implicit curve or the para-
metric curve was more aesthetic, that effect would not al-
ter the results by more than the a few percent. As can be
seen in section 5, the user choices fall very clearly on the
side of the implicit curves in both surveys. Since the result
is so clearcut, small error effects may be disregarded. We
also decided against doing a more detailed statistical anal-
ysis that would have been warranted if the data had shown
only a marginal preference. Since it so clearly answered our
question there was no need for more subtle analysis.

All curves were compared at similar scales and a range
of iso-values for the implicit curves were compared against
parametric curves, where the distance to the bounds of the
Voronoi cells produced a similar set of curves.

5. Results

Figure 16 shows a summary of the results of the first survey.
The B curves are the set of implicit curves, the S3 and S2
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Figure 16: A summary of the three comparisons done in the
first survey.
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Figure 17: Details of the comparisons between implicit,
quadratic and cubic curves.

curves, the cubic and quadratic B-splines respectively. It can
be seen in Figure 16 that the implicit curves were selected
about three times as often as the quadratic curves in direct
comparison, the implicit curves were selected almost four
times as often as the cubic curves and that there was only a
slight preference of the quadratic over the cubic curves when
compared directly.

Figure 17 shows the details of the three comparisons.

The results of survey two are shown in Figure 18. Again
a very clear preference for the implicit curves over the B-
spline curves is shown by the survey results. There were 116
respondents for survey one and 102 for survey two. The re-
sults of both surveys showed an overwhelming preference
for the implicit curves over the parametric. The image cho-

Figure 18: The number of votes for each image from survey
two, grouped as implicit (B-Blue), quadratic B-spline (red)
and cubic B-spline (green).

Figure 19: The image that garnered the least votes (�49).

sen most often in both surveys is shown in Figure 1. The
least most chosen images are shown in Figure 19.

There were 116 respondents for survey one, total number
of questions answered was 3,318. The following results were
obtained:

� The number of preferences for the implicit curves was
1,887 representing 56.87% of the votes.

� The number of preferences for the quadratic curves was
806 representing 24.29% of the votes.

� The number of preferences for the cubic curves was 625
representing 18.84% of the votes.

There were 116 respondents for survey two, the following
results were obtained:

� The score for the implicit curves was +376.
� The score for the quadratic curves was -128.
� The score for the cubic curves was -227.

This clear preference for the implicit curve construction
over the B-spline construction begs for some explanation.
Here are some possible reasons. (1) Our B-spline curves
are only C2-continuous, whereas the the implicit curves are
smooth, i.e. C�-continuous. (2) Using the average of the
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corners of the polygon as the centre for scaling the B-spline
curve may be an unfortunate, geometrically not particu-
larly meaningful choice. (3) You can argue that our implicit
method is mathematically the more appropriate approach
since it provides a continuous mapping from convex shapes
to inscribed curves, whereas the B-spline construction pro-
vides a mapping from sequences of points to curves. It may
be the case that this higher appropriateness leads to “better”
curves and thus the aesthetics of mathematics are reflected
in the aesthetics of human perception.

A few observations could also be made of the most pop-
ular image (Figure 1) versus the least popular (Figure 19).
In Figure 1 the neighbouring cell borders are close to par-
allel. It gives the sense of a more unified image rather than
a lot of unrelated objects that happen to be nearby, and also
the channel widths seem to be more uniform than the more
irregular channel widths of Figure 19. The sharp corners in
Figure 19 could be considered to be a defect, and the irregu-
larity of corner sharpness perhaps gives a bad impression. In
contrast in Figure 1 the corners are all the same, whereas you
can’t predict the sharpness of the next corner in Figure 19,
so it is perhaps seen as ugly.

6. Conclusions and Future Work

In order to design an implicit primitive suitable to build
volumes enclosed by Voronoi cells in R3, it was proposed
to first test curves in R2 to determine if there was an aes-
thetic preference for implicit over quadratic or cubic B-
spline curves as the basis for designing the implicit primi-
tives. Although there were some sources of possible error as
discussed, the results showed an overwhelming preference
for the implicit curves over either of the other two.

The next step in the project is to build an implicit primitive
in R3, corresponding to the parameters for the curve chosen
most often as the most aesthetic in both surveys.
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