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Perspective Viewing Transformation

RNy

arthographic projeciion parzpective projeciion hEflen Ines reinceed

o Tools for creating and manipulating a “camera” that
produces pictures of a 3D scene

o Viewing transformations and projections
Perform culling or back-face elimination
The graphics pipeline
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Viewing

View volume coordinates:
origin o and Xyz axes.

(=l v=b,w=n)

need to convert these to
w9 OFIQIN € and uvw axes.

AN
We can use:
x, v, z, O][1 o0 0o x|
M, = X, Y, 2z, O 0O 1 0 -y,
Xy, Yo Zy O0]10 O 1 -z
0O 0 0 1 0O 0 0 1
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Why Is Mv computed this way?

Yy

Yv
Yw
0

Xu Zu
Xv Zv
vrot —
Xw Zw
0 0

IHOOOI

Orthogonal Matrix Properties —
upper 3x3 rotates row vectors into the major axes
applies to any rotation matrix or rotation translation (+normalization).

cos0 -sin6 0| | cosO 1
sinod cosO O0f]-sin|=| O
0 0 1 0 0
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Cia| Qrth%gnal Matrices

1. For the upper 2x2 matrix, the row vectors are unit p— _ —
cos® —sinb 0
2. (cosO —sm@). and .(sme cosB) are per'pe:nd.lcular to each T 0
other: (cos® —sinB).(sin® cosB) = cosBsinB—sinBcosO=0
0 0 1

3. take the determinant: cosBcosB+sinBsinB=1 — -
Properties 1 and 2 are also true of the vectors formed by
the columns: (cosB sinB) and (-sin® cosb)
This defines a special orthogonal matrix
A transformation matrix which has such an upper 2x2 is  |cos@ —sin® i
called orthogonal i.e. transformations preserve angles and _
lengths. Matrices comprised of rotation and translation |sinf cos6 ty
are orthogonal e.g. square when rotated stays a square 0 0 |
Similarly in 3D the upper left 3x3 matrix comprise mutually
perpendicular unit vectors and the submatrix has a
determinant of unity.

1 0 0 cosO 0 sinB cos® —sinB 0

0 cos6 —sinb 0 1 0 sin@  cos@ 0

0 sin® cosb —sin® 0 cosB 0 0 I
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More Qrt,ho%_on@l Matrix Properties

Multiply one of the row vectors (transposed) of the upper left 3x3 rotation matrix
by the rotation matrix rotates the vector onto one of the principal axes.

- 7 rotation

cos® —sin® o| |cos® c0s0cosO+sinOsind B
sin®@  cosO 0 —sin6 = sinBcosO—cosHsind - 0
0 0 1 0 0 0

Also: the middle row rotates into the y axis
and the bottom row rotates into the z axis

— Xrotation = (=, - - _ _
similarly | 1 0 0 0 0
0 cos® —sin® cosb = c0sBcosB+sinBsind = 1
0 sin®  cosO —sin@ sinBcosf—cosHsind 0
— Y rotation e j— — p— - =
cosO 0 sin® —sinf —s1n0cosO+cosOsind 0
0 1 0 0 - 0 = 0
—sin® 0 cosB| | 60 cosBcosO+sinBsind 1
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Using Orthogonal Matrix Properties

X

The example required RZ.RX.Ry.T let R = |, T2y
Iz I2z

0 0

The upper left 3x3 matrix handles the rotation
the bottom row rotates a vector into the z-axis.

Consider the magenta vector in the example,call it V

The matrix will rotate (Vy, Fo, Fz)T into the z-axis but it
also rotated V into the z-axis so

'V is also (N, oy Fz)T
1\4l

Similarly (Fyy oy Fz2,)T will be rotated into the x~-axis. Given

a vector Q in the plane of the dinosaur that is also rotated
into the zy plane with V then

(F1y Foy F2,)T = VXQ finally (Fr, Foy F3)T=VxVxQ
IVxQ|| IVxVxQ
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v 7\
A u
y

w
\eye (6,7.5,8)
. ” vup t(0, 1, 0)
atpt (0, 0, 0)

gaze g= (0,0,0) - (6,7.5,8) sqrt(6*6+7.5*7.5+8*8) = 12.5

w=-g/|g]l = (6/12.5, 7.5/12.5, 8/12.5)=(0.48, 0.6, 0.64)

u=(t x w)/||[t x W||
v=(W X U)
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Calculate U-vector

w= 1/12.5 (6, 7.5, 8) t =(0, 1, 0)

u=(t x wy/|[t x w]| = (1/12.5)det | 2

txw=1/125(8, -0.0, -6.0)= (0.6,

txw _ 1/125(8, -0.0, -6.0)
It x w| 1/12.5 * sqrt(64+36)
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| k
1 0
7.5 8
0.0, -0.48)
(0.8, 0.0, -0.6)
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Calculate V-vector

V=WX U

w=1/125 (6,75, 8)
1/12.5* 1/12.5) det | 6
u=(08, 00, 06) ) 10

v = 1/(12.5 *12.5)( -56.25, 35, -75)
v =1/12.5(-4.5, 10, -6)
v = (-0.36, 0.8, -0.48)
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Calculate M

Vrot

08 00 -06 -6

M, ot = -0.36 0.8 -048  -75 foreyeat (6,7.5,8)
048 0.6 0.64 -8
0 0 0 1

check the matrix:

08 00 -06 |[os . similarly
036 0.8 -048 00 |_ 0 2"d row into y-axis
048 06 064 06| 0 3 row into z-axis
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3 Point Perspective

<

University of Victoria Graphics Lab.
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Objective is to simulate
this method




The Eve §¥§Lem

roll angie

Y

<

eve (Vfrom)
Centre of Projection What we see

— O \/iewing or Near Plane

View to point
Yon or far Plane

Z \/iewing Frustrum
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Geometry for the View Volume

- "

(0.5,0.5)
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“True” Perspective in 2D

size of an object proportional to 1/z
ys=(d/iz) y

View Plane
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Homoggngoug Representation of 2D transforms
AW

5 space Line representing all the triples

of the form (tx, ty, tW) t!=0 each 2D
homoaeneous point represents a line

/ of points in 3 space.

) ¢
/W=1 plane

The triples found by dividing

by W: (x,y,1) represent points in 2 space.
y These homoeeni‘zed points form

a plane in (x,y,W) space where W=1
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Perspective View Transformation

PI’Q“@I’V?HQ Z depth

The Perspective Transformation

The view frustrum is an
Inconvenient shape.

Clipping
Z depth calculation
Hidden surface calculation
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Perspective View Transformation

We want to find a matrix that

1. does not change points on
z=n plane

2. maps large rectangle at z=f to
small rectangle at z=n

3. achieve division by z by using
homogeneous to cartesian
conversion i.e. homogenize
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Perspective Matrix

nx/z

ny/z

1 0 0 0
M = 0 1 0 0
"o o f
n
0 0 1 0
h— ? —
for homogenous point (x,y,z,1) = (x/h, y/h, z/h, h)
— —
X
y y homogeniz
M| z = AL ==
1 n
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Perspective Matrix

for homogenous point (x,y,z,1) = (x/h, y/h, z/h, h)
thus we can multiply any transformation matrix by a constant.

M(hp) = (hM)p = Mp so we can multiply perspective matrix by n:

n 0 0 0
|\/|p= 0 n 0 0

0 0 n+f —fn

0 0 1 0
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Inverse Perspective Matrix

1n 0 0 0
_ |0 1/ 0 0
M= " e.g. for picking
0 0 0 1
0o o -um M
__ fn
Tidy this up by multiplying by nf
f 0 0 0
1 |0 f 0 0
M- =
0 0 0 fn
0 0 -1 n+f
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Perspective Projection Algorithm

We can now use the mechanism we used before for orthographic projection

Again Arbitrary View Point

compute M,
compute M,
compute M,

M=MM,M,

for each line segment in 3D (a;, b;) do {
p = Ma,
q = Mb;

X X
drawline( " %‘L e %‘ )
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