

Modelling Methods for Computer Graphics

Polygon Meshes

Mesh Consistency

All polygons closed, all edges used once but less than n-times. Each vertex is referenced by at least two edges (closed mesh). Some applications require planarity, no holes etc.

vtx 1 vtx 2 poly1 poly2

Subdividing Triangles

subdivide triangle cracks or T-intersection Problem

Using Triangle Meshes

1. Make sure triangles defined in a consistent direction, e.g. counter-clockwise indicates outwards normal.

2. Check for co-linear vertices or all vertices within epsilon of each other.

3. Rendering speed (few triangles) Vs. Smooth curved surfaces.

page 6

University

Plane Equation and Normal

$$A=C=0$$
 for this plane

$$Ax + By + Cz + D = 0$$

A, B, C, D can be computed from 3 non-colinear points, 4th equation is the plane equation. (Write it as determinants and expand by cofactors).

Normal to the plane is given by coeficients [A B C] Can also compute normal as cross product of 2 edges:

$$P_1P_2 \times P_1P_4$$

Zero cross product indicates colinear vertices.

OpenGl Polygons and Triangle Meshes

OpenGL allows convex polygons to be specified:

Figure 2-3 Nonplanar Polygon Transformed to Nonsimple Polygon

Figure 2-6 Geometric Primitive Types