

The University of Victoria
Graphics Group

Bernstein Polynomials - any degree

$$
J_{n, i}(t)=\binom{n}{i} t^{i}(1-t)^{n-i} \quad\binom{n}{i}=\frac{n!}{i!(n-i)!}={ }^{n} C_{i}
$$

Bezier curve defined as $\quad p(t)=\sum_{i=0}^{n} B_{i} J_{n, i}(t)$

$$
\begin{aligned}
& J_{3, i}(t)=\binom{3}{i} t^{i}(1-t)^{3-i} \quad\binom{3}{i}=\frac{6}{i!(3-i)!} \\
& J_{3,0}(t)=1 t^{0}(1-t)^{3}=(1-t)^{3} \\
& J_{3,1}(t)=3 t^{1}(1-t)^{2} \\
& J_{3,2}(t)=3 t^{2}(1-t)^{1} \\
& J_{3,3}(t)=t^{3} \quad Q(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}
\end{aligned}
$$

Implementation (brute force)

```
Input P[i], d
I/P[i]: control point, d : degree , u : parameter
    for u=0 to 1 step 0.01
        for i=0 to d
            b = Berenstein(i, d , u )
            q=q + b * P[i]
        end
        plot(q);
end
```

*This program isn't efficient
Redundant computations
High number of control points
High degree polynomial

High degree polynomial
Unstable computation

Convex Hull

What is the Convex Hull?

Given a set of points (in R^{n})
The smallest convex
polyhedral that includes all the points

$$
\begin{gathered}
\text { given } P=\left\{p_{0}, p_{1}, \ldots, p_{d}\right\} \\
C(P)=\left\{p \mid p=\sum_{i=0}^{d} c_{i} p_{i} ; c_{i} \geq 0, \sum c_{i}=1\right\}
\end{gathered}
$$

de Casteljau Algorithm

Avoid direct evaluating of polynomials

Geometric interpretation
Consider a planer cubic at $u=\frac{1}{2}$

$$
\begin{aligned}
& j=3 \\
& j=2 \\
& j=1 \\
& j=0
\end{aligned}\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
2 \\
8 \\
2 \\
4 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
1 \\
4 \\
2 \\
6 \\
1
\end{array}\right]
$$

u
$1-u$

* column by column updating rule

Pseudo Code

Input P[j], d, u
IIP[j] : control point, d : degree, u : parameter
Iloutput will be Q(u)
for $\mathbf{i}=1$ to d
for $\mathbf{j}=\mathbf{0}$ to $\mathbf{d - i}$
$P[j]=(1-u) * P[j]+u * P[j+1]$
end
end
Output ???

$$
(1-u)^{3}\left[\begin{array}{l}
4 \\
0
\end{array}\right]=B_{0,3}(u)\left[\begin{array}{l}
4 \\
0
\end{array}\right]
$$

Some Observations on Cubic Case

*After one step of deCastlejeau algorithm for $u=\frac{1}{2}$

* Obtaining $\quad Q\left(\frac{1}{2}\right)$
$* 4$ green points $\quad L_{0}, L_{1}, L_{2}, L_{3}$
* 4 blue points $\quad R_{0}, R_{1}, R_{2}, R_{3}$
* Where $\quad L_{3}=R_{0}=Q\left(\frac{1}{2}\right)$

* Small left Bezier curve:
* Small right Bezier curve: $\stackrel{\rightharpoonup}{ }$
* Divided and conquer method

Matrix Relation

$$
\left[\begin{array}{l}
L_{0} \\
L_{1} \\
L_{2} \\
L_{3} \\
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\
\frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
P_{0} \\
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]
$$

*Unit summation of any row.

* Non negative elements.
* Banded structure.

Another View

We start with 4 points $\left(P_{0}, P_{1}, P_{2}, P_{3}\right)$
We will obtain 8 new points 7 new points

* New points: $L_{0}, L_{1}, L_{2}, L_{3}, R_{1}, R_{2}, R_{3}$
* New points are closer to the curve

* We can repeat for any 4 points in the new points sets
*And initial polyline is replaced by a finer polyline
* Subdivision method

Pseudo Code for Subdivision Method

Polyline subBezier (polyline P)

```
//cubic Bezier, d=3,
//uniform subdivision, u=1/2
//Input is polyline P
// n is number of P points (coarse polyline)
// O is output polyline (fine polyline)
    j=0;
    for (i=0 ; i<n ; i=+3)
    O[j]=P[i];
    O[j+1]=(P[i] + P[i+1])/2
    O[j+5]=(P[i+2] + P[i+3])/2
    t=(P[i+1]+P[i+2])/2
    O[j+2]=(t + O[j+1])/2
    O[j+4]=(t + O[j+5])/2
    O[j+3]=(O[j+2] + O[j+4])/2
        j=j+6;
    endfor
Return O
```


Weakness of Bezier curves

- High degree polynomial
- How can we obtain better control of the curve without adding control points?

* Composite Bezier curve: join Bezier curve segments.
* Apply some constraints at the connection points.
* What are these constraints?
o Positional Continuity = zero degree continuity
o Same direction tangents = first degree continuity
Any other weakness?

Piecewise quadratic polynomials: Chaikin Algorithm

- Easy and local algorithm
- Two magic! numbers $\frac{3}{4} \& \frac{1}{4}$
- Corner cutting

Convergence

* smooth limit curve (no corner), quadratic B-spline!

Subdivision Matrix

- Coarse points

subdivision

fine points

- $F=P C$
- Iterative process
- P has a regular banded structure
$P=\left[\begin{array}{ccccc} & \frac{1}{4} & 0 & 0 & \\ & \frac{3}{4} & 0 & 0 & \\ & \frac{3}{4} & \frac{1}{4} & 0 & \\ \cdots & \frac{1}{4} & \frac{3}{4} & 0 & \\ & 0 & \frac{3}{4} & \frac{1}{4} & \\ & 0 & \frac{1}{4} & \frac{3}{4} & \\ & 0 & 0 & \frac{3}{4} & \\ & 0 & 0 & \frac{1}{4} & \end{array}\right]$

Faber Subdivision

$$
*\left\{\begin{array}{l}
W_{2 i}=V_{i} \\
W_{2 i+1}=\frac{1}{2}\left(V_{i}+V_{i+1}\right)
\end{array}\right.
$$

University of Victoria Island Graphics Lab.
CSC 4052007

page 15

Subdivision Matrix

$$
P=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

*What is the limit curve?

* Obvious interpretation in the resolution enhancement of images
* Periodic case

Image Example

Image application

* Increasing the resolution of image
* Traditional method(Faber)
* $1 / 2$ left $+1 / 2$ right
* Chaikin rule

Repeating algorithm for every row

University of Victoria Island Graphics Lab.

Comparing the results

Lena (Lenna) a famous early digitized image. Photo stolen from the November 1972 issue of Playboy Magazine.

