
cpsc/enel P 1 0

E

SE

P=(xp,yp)

M2

M1M

Q
P

Only need consider 450 of the circle use
symmetry to find other points.

E.g. consider octant from x=0 to x=y=R/ 2
Choose which of two points closer to the
midpoint:

Let F(x,y) = x2+y2−R2

d (d
M
) is the value at the mid−point

d = F(xp+1, yp−) = (xp+1)2 + (yp−)2 − R2

if d < 0 (M inside) choose E then

dM1=F(xp+2, yp−) = (xp+2)2 + (yp−)2 − R2

subtracting dM1−d = (xp+2)2 − (xp+1)2

for move to E dM1 = ∆E = 2xp + 3

Scan Converting Circles

+
−

1
2

1
2

1
2

1
2

cpsc/enel P 1 1

Scan Converting Circles
Continued

if d > 0 (M outside) choose SE then

dM2=F(xp+2, yp−) = (xp+2)2 + (yp−)2 − R2

subtracting dM2−d = (2xp − 2yp +5)

for move to SE dM2−d = ∆SE = 2xp − 2yp +5

∆E and ∆SE vary at each step (constant for lines)
but are linear functions depend on P.

Initial Condition
For integer radii in the second octant the circle
starts at (0,R), the first midpoint will be at
(1, R−)

F(1, R−) = 1 + (R2 − R +) − R2 = 5/4 − R

We can now make an algorithm similar to the Line
algorithm.

3
2

3
2

1
2

1
4

1
2

E

SE

P=(xp,yp)

M2

M1M

P

void mid−pointCircle(int radius, int value)
/* assume centre of circle at origin */
{

int x = 0;
int y = radius;
double d = 5.0 / 4.0 − radius;
circlePoints(x,y,value); /* draws 8 points */

while (y>x) {
if (d < 0) /* select E */
d += 2.0*x + 3.0;
else { /* select SE */

d += 2.0 * (x−y) + 5.0;
y−−;

}
x++;
circlePoints(x,y,value);

} /* while*/
}

Q

cpsc/enel P 1 2

void mid−pointCircle(int radius, int value)
/* assume centre of circle at origin */
{

int x = 0;
int y = radius;
int d = 1 − radius;
circlePoints(x,y,value); /* draws 8 points */

while (y>x) {
if (d < 0) /* select E */
d += 2.0*x + 3.0;
else { /* select SE */

d += 2.0 * (x−y) + 5.0;
y−−;

}
x++;
circlePoints(x,y,value);

} /* while*/
}

Eliminating Floating Point
Problem is that loop contains floating point
operations. Initially d = 5/4 − radius

If we substitute h for d where h=d − 1/4

initially h = 1 − radius

comparison becomes if (h < −1/4)

However since we are working in integer
(comparison and incement in integer) we can still
use if (h < 0)

cpsc/enel P 1 3

Second order partial Differences

E

SE

P=(xp,yp)

M2

M1M

Q
P

But any polynomial can be computed
incrementally. Evaluate the function at
adjacent points, calculate the difference (one
degree lower) apply difference in each iteration.

For example suppose we choose E:
point of evaluation moves
from (xp, yp) to (xp+1, yp)

first order difference is:
∆Eold = 2xp + 3 at (xp, yp)
∆Enew = 2(xp + 1) + 3 at (xp+1, yp)

second order difference ∆Enew − ∆Eold = 2

Similarly for SE
∆SEold = 2xp − 2yp +5
∆SEnew = 2(xp+1) − 2(yp−1) +5

second order difference ∆SEnew − ∆SEold = 4

cpsc/enel P 1 4

void mid−pointCircle(int radius, int value)
{ int x = 0;

int y = radius;
int d = 1 − radius;
int deltaE = 3;
int deltaSE = −2*radius + 5;
circlePoints(x,y,value); /* draws 8 points */
while (y>x) {

if (d < 0) { /* select E */
d += deltaE;
deltaE += 2;
deltaSE+=2;

} else { /* select SE */
d += deltaSE;
deltaE += 2;
deltaSE+= 4;
y−−;

}
x++;
circlePoints(x,y,value);

} /* while*/
}

Circle Algorithm
Use second order
differences to compute
increments. assume centre
of circle at origin

CPSC/ENEL P 1 5

Scan Converting Polygons

Polygons may be convex or concave
self intersecting, have holes etc.

Can keep a table of spans. Find
extrema from scan converting edges
of polygon.

Some pixels lie outside the
polygon.

Edge extrema only choosing
inside edges. Care with
abutting polygons.

2 4 6 8 10 12

2

4

6

8

10

12

P0

P1

P2

P3

P4

P5
Scan Line

Polygon

a b c d

CPSC/ENEL P 1 6

Scan Converting Polygons
continued

To calculate span extrema an incremental
technique is used to avoid intersecting each
edge with each scanline.

1. Find Intersection of scan line with all edges
of polygon.

2. Sort intersections by increasing
x−coordinate.

3. Fill spans using parity rule.

Shared vertices
e.g. p4 on scanline 6 is counted in parity
calculation if it is ymin for that edge but not
for ymax. parity is changed twice at p4
on scanline 6 but not changed at p3. P0
changes parity for edge p5p0 but not for
edge p0 p1 so parity changes only once as
scanline 3 enters the polygon.

Parity Rule

Parity=EVEN
At each edge invert parity.
Draw when parity is odd.

This scheme fails for
scanline y=10 at p3

2 4 6 8 10 12

2

4

6

8

10

12

P0
P1

P2

P3

P4

P5

Scan Lines

Polygon

a b c d

CPSC/ENEL P 1 7

Scan Converting Polygons
continued

If intersection is fractional x value are pixels on
either side interior?

If parity is odd (inside) round down (A will be
inside B outside) if parity is even round up (B
inside A outside).

Intersection at integer pixel coordinates.
E.g. scanline 8.
Interior: if leftmost pixel in a span is integer
Exterior: if rightmost pixel in a span is integer

Horizontal Edges
The rule is that parity does not change for either
vertex of horizontal edge. E.g. Vertex A is ymin
wrt JA and AB does not change parity. B is ymin
for BC but since AB does not contribute B
changes parity to even for BC. Scanline S passes
through C. CD does not affect it and C is ymax
for BC and makes no change. GF not drawn.
Aliasing problems − thin sliver polygons.

A B

2 4 6 8 10 12

2

4

6

8

10

12

P0
P1

P2

P3

P4

P5

Scan Lines

Polygon

a b c d

A B

C D

E

FG

HI

J
Scanline S

GF not drawn

CPSC/ENEL P 1 8

Edge Coherance

Problem: Find Intersection of scan lines with all edges of polygon.

If slope is m then successive scan line intersections can be found from:

xi+1 = xi + 1/m

Where i is the scan line count. (Can avoid fp arithmetic by storing numerator and
comparing to denominator, increment x when it overflows.)

Scan−line Algorithm
AET = Active Edge Table
store all edges intersected by a scan line sorted by x intersection. As each new
scan line is encountered update AET. y y+1

1. Remove edges not intersected by y+1 (ymax=y)
2. Add edges intersected by new scan line ymin=y+1
3. Calculate new x intersections.

CPSC/ENEL P 1 9

Scan Line Algorithm

2 4 6 8 10 12

P0

P1

P2

P3

P4

P5
Scan Line

Polygon

a b c d

2

4

6

8

10

12

Edge Table contains all scanlines

ymax xmin 1/m next

2

4

6

8

10

0 /

/

/

/

/

/

/

3 7 −5/2 5 7 6/4 /

9 2 0

11 13 0

9 7 −5/2 11 7 6/4 /

/

/

	Text1: CSC 305

