Scan Converting Circles

Only need consider 45° of the circle use symmetry to find other points.
E.g. consider octant from $x=0$ to $x=y=R / \sqrt{2}$ Choose which of two points closer to the midpoint:

Let $F(x, y)=x^{2}+y^{2}-R^{2}$

$$
\begin{aligned}
& d\left(d_{M}\right) \text { is the value at the mid-point } \\
& d=F\left(x p+1, y p-\frac{1}{2}\right)=(x p+1)^{2}+\left(y p-\frac{1}{2}\right)^{2}-R^{2} \\
& \text { if } d<O \text { (M inside) choose } E \text { then }
\end{aligned}
$$

$$
d M 1=F\left(x p+2, y p-\frac{1}{2}\right)=(x p+2)^{2}+\left(y p-\frac{1}{2}\right)^{2}-R^{2}
$$

$$
\text { subtracting } d m 1-d=(x p+2)^{2}-(x p+1)^{2}
$$

$$
\text { for move to } E \quad d_{M 1}=\Delta E=2 \times p+3
$$

Scan Converting Circles

Continued

if $d>O$ (M outside) choose $S E$ then
$d M 2=F\left(x p+2, y p-\frac{3}{2}\right)=(x p+2)^{2}+\left(y p-\frac{3}{2}\right)^{2}-R^{2}$
subtracting $d m z-d=(2 x p-2 y p+5)$
for move to SE

$$
d M 2-d=\Delta S E=2 x p-2 y p+5
$$

ΔE and $\Delta s e$ vary at each step (constant for lines) but are linear functions depend on P.

Initial Condition

For integer radii in the second octant the circle starts at $(0, R)$, the first midpoint will be at
(1, $R-\frac{1}{2}$)
$F\left(1, R-\frac{1}{2}\right)=1+\left(R^{2}-R+\frac{1}{4}\right)-R^{2}=5 / 4-R$

We can now make an algorithm similar to the Line algorithm.


```
void mid-pointCircle(int radius, int value)
/* assume centre of circle at origin */
{
    int x = 0;
    int }y=\mathrm{ radius;
    double d=5.0 / 4.0 - radius;
    circlePoints(x,y,value); /* draws 8 points */
    while (y>x) {
        if (d<0) /* select E */
        d += 2.0*x + 3.0;
        else { /* select SE */
                    d+=2.0* (x-y) + 5.0;
            y--;
        }
        x++;
        circlePoints(x,y,value);
    }/* while*/
}
```


Eliminating Floating Point

Problem is that loop contains floating point operations. Initially $d=5 / 4$ - radius

If we substitute h for d where $h=d-1 / 4$
initially $h=1$ - radius
comparison becomes if ($h<-1 / 4$)
However since we are working in integer (comparison and incement in integer) we can still use if (h<0)

```
void mid-pointCircle(int radius, int value)
/* assume centre of circle at origin */
{
    int x = 0;
    int }y=\mathrm{ radius;
    int d=1 - radius;
    circlePoints(x,y,value); /* draws 8 points */
    while (y>x) {
        if (d<0) /* select E */
        d += 2.0*x + 3.0;
        else { /* select SE */
                d += 2.0* (x-y) + 5.0;
                y--;
        }
        x++;
        circlePoints( }x,y\mathrm{ ,value);
    }/* while*/
}
```


Second order partial Differences

But any polynomial can be computed incrementally. Evaluate the function at adjacent points, calculate the difference (one degree lower) apply difference in each iteration.

For example suppose we choose E:
point of evaluation moves
from ($x p, y p$) to ($x p+1, y p$)
first order difference is:

$$
\begin{array}{ll}
\Delta \text { Eold }=2 x p+3 & \text { at }(x p, y p) \\
\Delta \text { Enew }=2(x p+1)+3 & \text { at }(x p+1, y p)
\end{array}
$$

second order difference Δ Enew $-\Delta$ Eold $=2$

Similarly for SE

$$
\begin{aligned}
& \Delta \text { sEold }=2 x p-2 y p+5 \\
& \Delta \text { SEnew }=2(x p+1)-2(y p-1)+5
\end{aligned}
$$

second order difference Δ SEnew $-\Delta$ sEold $=4$

Circle Algorithm

Use second order
differences to compute
increments. assume centre of circle at origin

```
void mid-pointCircle(int radius, int value)
{ int x = O;
    int y = radius;
    int d = 1 - radius;
    int deltaE = 3;
    int deltaSE = -2*radius + 5;
    circlePoints(x,y,value); /* draws 8 points */
    while ( }y>x\mathrm{ ) {
        if (d< ) { /* select E */
            d += deltaE;
            deltaE += 2;
            deltaSE+=2;
        } else { /* select SE */
            d += deltaSE;
            deltaE += 2;
            deltaSE+= 4;
            y--;
        }
        x++;
        circlePoints(x,y,value);
    } /* while*/
}
```


Scan Converting Polygons

Polygons may be convex or concave self intersecting, have holes etc.

Can keep a table of spans. Find extrema from scan converting edges
of polygon.

Edge extrema only choosing inside edges. Care with abutting polygons.

Scan Converting Polygons

Parity Rule

Parity=EVEN
At each edge invert parity. Draw when parity is odd.

This scheme fails for scanline $y=10$ at $p 3$

To calculate span extrema an incremental technique is used to avoid intersecting each edge with each scanline.

1. Find Intersection of scan line with all edges of polygon.
2. Sort intersections by increasing x-coordinate.
3. Fill spans using parity rule.

Shared vertices

e.g. p4 on scanline 6 is counted in parity calculation if it is ymin for that edge but not for ymax. parity is changed twice at p4 on scanline 6 but not changed at p3. Po changes parity for edge p5p0 but not for edge p0 p1 so parity changes only once as scanline 3 enters the polygon.

Scan Converting Polygons

continued

If intersection is fractional x value are pixels on either side interior?

If parity is odd (inside) round down (A will be inside B outside) if parity is even round up (B inside A outside).

Intersection at integer pixel coordinates.
E.g. scanline 8.

Interior: if leftmost pixel in a span is integer Exterior: if rightmost pixel in a span is integer

Horizontal Edges

The rule is that parity does not change for either vertex of horizontal edge. E.g. Vertex A is ymin wrt $J A$ and $A B$ does not change parity. B is ymin for $B C$ but since $A B$ does not contribute B changes parity to even for $B C$. Scanline S passes through C. CD does not affect it and C is ymax for $B C$ and makes no change. GF not drawn.
Aliasing problems - thin sliver polygons.

Edge Coherance

Problem: Find Intersection of scan lines with all edges of polygon.
If slope is m then successive scan line intersections can be found from:

$$
X_{i+1}=X_{i}+1 / m
$$

Where i is the scan line count. (Can avoid f_{p} arithmetic by storing numerator and comparing to denominator, increment x when it overflows.)

Scan-line Algorithm
AET = Active Edge Table
store all edges intersected by a scan line sorted by x intersection. As each new scan line is encountered update AET. y $y+1$

1. Remove edges not intersected by $y+1$ (ymax $=y$)
2. Add edges intersected by new scan line ymin $=y+1$
3. Calculate new x intersections.

Scan Line Algorithm

Edge Table contains all scanlines

$y \max$	x min	$1 / m$	next

