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Uniform Nonrational B−Splines
continued

MBs=

B−Spline Matrix

1/6

−1 3 −3 0
3 −6 3 0

−3 0 3 0
1 4 1 0

Q(t) = T MBSGBS

In the range (0<=t<1)

Q(t) = 
(1−t)3Pi−3 + (3t3−6t2+4)Pi−2 + (−3t3+3t2+3t+1)Pi−1 + t3Pi

6 6 6 6

B−Spline Basis functions
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B−Spline Basis functions
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Four basis functions sum to 1 and are 
non−negative, convex hull holds.

G0 G1 and G2 continuous.

To show continuity work with x components:

xi  t=1 = xi+1  t=0 = 1/6(Pi−2 + 4Pi−1 + Pi)

x’i  t=1 = x’i+1  t=0 = 1/2(−Pi−2 + Pi)

x’’i  t=1 = x’’i+1  t=0 = Pi−2 − 2Pi−1 + Pi

B0B3

B2 B1

In the range (0<=t<1)

Q(t) = 
(1−t)3Pi−3 + (3t3−6t2+4)Pi−2 + (−3t3+3t2+3t+1)Pi−1 + t3Pi

6 6 6 6
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B−Spline Basis functions

B−Spline basis functions in the range −2 to +2
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In the range (0<=t<1)

Q(t) = 
(1−t)3Pi−3 + (3t3−6t2+4)Pi−2 + (−3t3+3t2+3t+1)Pi−1 + t3Pi

6 6 6 6

(−3t3+3t2+3t+1)
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Properties of these curves

These cubic curves are linear combinations of the four elements of the geometry 
vector.   The curves can be transformed by transforming the geometry vector.  
The curves are invariant under affine transformations (scaling, rotation and 
translation).  

B−Splines are G2 continuous at the cost of loss of control.   Control points can be 
replicated to force curve to pass through points:

Coincident control vertices can 
also be used:

e.g. Pi−2=Pi−1=Pi   resulting in:

Q(i)=B3Pi−3 + (B2+ B1 +B0)Pi

A straight line.

P3

P4

P1

P0

t3 t4

t5

P5

P2

t6

Vertically aligned vertices constrain the curve to 

pass through one of them.
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NUBS and NURBS
NUBS − Non−uniform non−rational B−Splines.
The parameter interval between successive knot values need not be uniform.
The blending functions are no longer the same for each knot interval.  Continuity 
can be reduced from C2 to C1 to C0 to none.   The curve can be made to 
interpolate a control point without introducing linear segments.   Successive knot 
values can be equal, these coincident knots cause the curve segement to reduce 
to a point.

x(t) = X(t)

       W(t)
y(t) = Y(t)

       W(t)
z(t) = Z(t)

       W(t)

NURBS − Non−uniform Rational B−Splines.
Rational cubic curve segments are ratios of polynomials:

Q(t)=[X(t)  Y(t)  Z(t)  W(t)]

Each of X(), Y(), Z(), W() are cubic polynomial curves defined in homogeneous 
coordinates.   This is useful as they are invariant under perspective
transformations as well as the affine transformations.  Transformations 
need only be applied to control points only.



cpsc/enel P 8

Parametric Bicubic Surfaces
As with curves only two parameters.
Geometry vector now becomes functions of 
t:

Q(s,t)=S . M . G(t)=S . M .

The Gi(t) are themselves cubics.
Each can be represented as 

Gi(t)=T . M . gi  where gi=

We want the gi  as a row vector so we can 
substitute into the equation for Q(s,t).

Since (A.B.C)T=CT.BT.AT

Gi(t) = gi
T  . MT . TT = [gi1 gi2 gi3 gi4] . MT . TT

G1(t)
G2(t)
G3(t)
G4(t)

t

s

P1(t) P4(t)

P1(s)

P4(s)

t=0.0

t=0.2

t=0.4

t=0.6

t=0.8

t=1.0

s=0.0

s=1.0

gi1
gi2
gi3
gi4

F&VD.1 p 516
F&VD.2 p 351
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Gi(t) = gi
T  . MT . TT = [gi1 gi2 gi3 gi4] . MT . TT

therefore Q(s,t)=S . M  . MT . TT

or Q(s,t)=S . M . G . MT . TT    (0<=t<=1)  (0<=s<=1)

thus an x,y,z point can be found for a given value of s and t.

If M is MH then we have a Hermite surface:
e.g. x(s,t) = S . MH 

g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

Hermite Surfaces

P1(t)
P4(t)
R1(t)
R4(t)

g11
g12
g13
g14

P1(t)=T . MH 

g12
g22
g23
g24

P4(t)=T . MH 

g31
g32
g33
g34

R1(t)=T . MH 

g41
g42
g43
g44

R4(t)=T . MH 

where:
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Hermite Surfaces
continued

Q(s,t)=S . M  . MT . TT

g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

The ’g’ matrix for the hermite surface is :

t

s

P4(t)

P1(s)

P4(s)

Q(0.0)

t=1.0

s=1.0

Q(0.0)

Q(0.1)

Q(1,0)

Q(1.1)

Q(0.1)
Q(1.1)

Q(1.1)

Q(1,0)

Q(0.1)

Q(0.1)

Q(0.0)

Q(1,0)

x(0,0) x(0,1) x(0,0)

x(1,0) x(1, 1)

x(0,0) x(0,1) x(0,0) x(0,1)

x(1,0) x(1,1)x(1,0) x(1, 1)

GHx=

x(0,1)

x(1,0) x(1,1)
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Continuity between surface patches

_ _ _ _

g21 g22 g23 g24

_ _ _ _

g41 g42 g43 g44

g21 g22 g23 g24

_ _ _ _

kg41 kg42 kg43 kg44

_ _ _ _

g11
g12
g13
g14

P1(t)=T . MH 

g12
g22
g23
g24

P4(t)=T . MH 

g31
g32
g33
g34

R1(t)=T . MH 

g41
g42
g43
g44

R4(t)=T . MH 

where:

Patch 1 Patch 2

k>0
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Bezier patches

Polygonal Spout
Adaptive Subdivision algorithm at work on the spout

Uniformly polygonised patch
and Bezier control points
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Drawing Cubics

Straightforward implementation
by Horner’s Rule
e.g.
void x(double t)
{
    return t*(t*(t*ax+bx)+cx)+dx;

}
5 multiplies 3 additions

Repeated Evaluation of Cubic by 
Forward Differences

Definition : ∆f(t)=f(t+δ)−f(t) δ>0
rewriting: f(t+δ)=∆f(t)+f(t)

Rewriting iteratively: fn+1 = fn + ∆fn

f(t) = at3+bt2+ct+d

∆f(t) = a(t+δ)3 + b(t+δ)2 +c(t+δ) +d
− (at3+bt2+ct+d)

∆f(t) = 3at2δ+t(3aδ2+2bδ)+aδ3+bδ2+cδ −−(1)

So ∆f(t) is second degree. Applying forward 
differences again to reduce this further:

∆2f(t) = ∆(∆f(t)) = ∆f(t+δ)−∆f(t)

applying by writing (t+δ) for t in (1)
∆f(t) or (3at2δ+t(3aδ2+2bδ)+aδ3+bδ2+cδ)

Yields  ∆2f(t) = 6aδ2t + 6aδ3 +2bδ2 −−(2)

∆3f(t) = ∆(∆2f(t)) = ∆2f(t+δ)−∆2f(t)

substituting (t+δ) for t in (2)

∆3f(t) =  6aδ3  −−(3)
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Forward Differences 
By Definition :  ∆f(t)=f(t+δ)−f(t)
rewriting: f(t+δ)=f(t)+∆f(t)

fn+1 = fn + ∆fn

In other words tn = nδ and fn=f(tn)
f is evaluated at equal intervals of size δ.

At t=0 f0 = d
∆f0 = aδ3+bδ2+cδ 
∆2f0 = 6aδ3 +2bδ2

∆3f0 =  6aδ3

by definition: ∆2f(t) = ∆f(t+δ)−∆f(t)
or ∆2fn = ∆fn+1 − ∆fn

∆fn+1 = ∆fn + ∆2fn
similarly

∆3f(t) = ∆2f(t+δ)−∆2f(t)
∆2fn+1 = ∆2fn + ∆3fn

and ∆3fn is constant

Repeat following steps m 
times with n initially 0:−

fn+1 = fn + ∆fn
∆fn+1 = ∆fn + ∆2fn

∆2fn+1 = ∆2fn + ∆3f0

n=0
f1 = f0 + ∆f0
∆f1 = ∆f0 + ∆2f0

∆2f1 = ∆2f0 + ∆3f0

n=1
f2 = f1 + ∆f1
∆f2 = ∆f1 + ∆2f1

∆2f2 = ∆2f1 + ∆3f0

Suppose we want 64 steps
n=64 or δ=1/64
t0 = 0δ = 0
t1 = 1δ = 1/64
t2 = 2δ = 2/64  etc.
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f0 = d
∆f0 = aδ3+bδ2+cδ 
∆2f0 = 6aδ3 +2bδ2

∆3f0 =  6aδ3

Forward Differences
continued

Dx = E(δ)Cx
Dy = E(δ)Cy
Dz = E(δ)Cz

f0

∆f0

∆2f0

∆3f0

0 0 0 1
δ3 δ2 δ 0
6δ3 2δ2 0 0
6δ3 0 0 0

a
b
c
d

=

fx(t) = axt3+bxt2+cxt+dx

similarly for y and z

so we have:

and can
calculate

algorithm writing ∆x for ∆fnx etc.

for (i=0; i<n; i++) {

x+=∆x;  ∆x+=∆2x; ∆2x+=∆3x;
y+=∆y;  ∆y+=∆2y; ∆2y+=∆3y;
z+=∆z;  ∆z+=∆2z; ∆2z+=∆3z;
lineAbs(x,y,z);

}

f0

∆f0

∆2f0

∆3f0

x and y and z

fn

∆fn

∆2fn

∆3fn

x and y and z

f0

∆f0

∆2f0

∆3f0
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Example

Bezier Curve Segment

0,0

1, −1

2,0

1,1
For Qx(t) = T Mb Gbx
Cx = Mb Gbx

0
1

Gbx =  1       Mb = 
2

Qx(t) = axt3+bxt2+cxt+dx
ax = 2
bx = −3
cx = 3
dx = 0

we have:
Qx(t) = 2t3−3t2+3t

taking 100 steps δ=0.01
At t=0

f0 = d = 0
∆f0 = aδ3+bδ2+cδ = 0.029702

∆2f0 = 6aδ3 +2bδ2 = −0.000588

∆3f0 =  6aδ3 = 0.000012

1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0
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Example
continued

f0 = 0
∆f0 = 0.029702
∆2f0 = −0.000588
∆3f0 = 0.000012

for (i=0; i<n; i++) {

x+=∆x;  ∆x+=∆2x; ∆2x+=∆3x;
y+=∆y;  ∆y+=∆2y; ∆2y+=∆3y;
z+=∆z;  ∆z+=∆2z; ∆2z+=∆3z;
lineAbs(x,y,z);

}

x ∆x ∆2x ∆3x
0 0.029702 0.029114 0.000012
0.029702 0.029114 −0.000576 0.000012
0.058816 0.028538 −0.000564 0.000012
0.087354 0.027974 −0.000552 0.000012
0.115328 0.027422 −0.000540 0.000012
.etc. until   ...........................................
1.912645 0.028538 0.000576 0.000012
1.941183 0.029114 0.000588 0.000012
1.970297 0.029702 0.000600 0.000012
1.999999 0.030302 0.000612 0.000012
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