Compulter Graphics

More Curves \& Surfaces

Brian Wyvill
University of Victoria

Uniform Nonrational B-Splines
continued

$$
Q G_{B_{i}}=\left|\begin{array}{l}
P_{i-3} \\
P_{i-2} \\
P_{i-1} \\
P_{i}
\end{array}\right|
$$

First segment $Q_{3}=$

Parameter Range

$$
\begin{aligned}
& t 3<=t<t 4 \\
& (0<=t<1)
\end{aligned}
$$

$$
M_{B S}=1 / 6\left|\begin{array}{rrrr}
-1 & 3 & -3 & 0 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{array}\right|
$$

B-Spline Basis functions

$$
Q(t)=T M_{B S} G_{B S}
$$

In the range $(0<=t<1)$

$$
Q(t)=\frac{(1-t)^{3} P_{i-3}}{6}+\frac{\left(3 t^{3}-6 t^{2}+4\right)}{6} P_{i-2}+\frac{\left(-3 t^{3}+3 t^{2}+3 t+1\right)}{6} P_{i-1}+\frac{t^{3} P_{i}}{6}
$$

B-Spline Basis functions

Four basis functions sum to 1 and are non-negative, convex hull holds.
$G^{0} G^{1}$ and G^{2} continuous.

To show continuity work with \times components:

$$
\begin{aligned}
& \left.x_{i}\right|_{t=1}=\left.x_{i+1}\right|_{t=0}=1 / 6\left(P_{i-2}+4 P_{i-1}+P_{i}\right) \\
& \left.x_{i}^{\prime}\right|_{t=1}=\left.x_{i+1}^{\prime}\right|_{t=0}=1 / 2\left(-P_{i-2}+P_{i}\right) \\
& \left.x^{\prime \prime}\right|_{t=1}=\left.x_{i+1}^{\prime \prime}\right|_{t=0}=P_{i-2}-2 P_{i-1}+P_{i}
\end{aligned}
$$

In the range ($0<=t<1$)

$$
Q(t)=\frac{(1-t)^{3}}{6} P_{i-3}+\frac{\left(3 t^{3}-6 t^{2}+4\right)}{6} P_{i-2}+\frac{\left(-3 t^{3}+3 t^{2}+3 t+1\right)}{6} P_{i-1}+\frac{t^{3} P_{i}}{6}
$$

B-Spline Basis functions

B-Spline basis functions in the range -2 to +2

In the range ($0<=t<1$)

$$
Q(t)=\frac{(1-t)^{3}}{6} P_{i-3}+\frac{\left(3 t^{3}-6 t^{2}+4\right)}{6} P_{i-2}+\frac{\left(-3 t^{3}+3 t^{2}+3 t+1\right)}{6} P_{i-1}+\frac{t^{3} P_{i}}{6}
$$

Properties of these curves

These cubic curves are linear combinations of the four elements of the geometry vector. The curves can be transformed by transforming the geometry vector. The curves are invariant under affine transformations (scaling, rotation and translation).

B-Splines are G^{2} continuous at the cost of loss of control. Control points can be replicated to force curve to pass through points:

Coincident control vertices can also be used:
e.g. $P_{i-2}=P_{i-1}=P_{i}$ resulting in:
$Q(i)=B_{3} P_{i-3}+\left(B_{2}+B_{1}+B_{0}\right) P_{i}$
A straight line.

Vertically aligned vertices constrain the curve to pass through one of them.

NUBS and NURBS

NUBS - Non-uniform non-rational B-Splines.

The parameter interval between successive knot values need not be uniform. The blending functions are no longer the same for each knot interval. Continuity can be reduced from C^{2} to C^{1} to C^{0} to none. The curve can be made to interpolate a control point without introducing linear segments. Successive knot values can be equal, these coincident knots cause the curve segement to reduce to a point.

NURBS - Non-uniform Rational B-Splines.

Rational cubic curve segments are ratios of polynomials:

$$
x(t)=\frac{X(t)}{W(t)} \quad Y(t)=\frac{Y(t)}{W(t)} \quad Z(t)=\frac{Z(t)}{W(t)} \quad Q(t)=[X(t) \quad Y(t) \quad Z(t) \quad W(t)]
$$

Each of $X(), Y(), Z(), W()$ are cubic polynomial curves defined in homogeneous coordinates. This is useful as they are invariant under perspective transformations as well as the affine transformations. Transformations need only be applied to control points only.

Parametric Bicubic Surfaces
As with curves only two parameters. Geometry vector now becomes functions of t:

$$
Q(s, t)=S \cdot M \cdot G(t)=S \cdot M \cdot\left|\begin{array}{l}
G_{1}(t) \\
G_{2}(t) \\
G_{3}(t) \\
G_{4}(t)
\end{array}\right|
$$

The $G_{i}(t)$ are themselves cubics.
Each can be represented as

$$
G_{i}(t)=T . M \text {. } g_{i} \text { where } g_{i}=\left|\begin{array}{l}
g_{i 1} \\
g_{i 2} \\
g_{i 3} \\
g_{i 4}
\end{array}\right|
$$

We want the g_{i} as a row vector so we can substitute into the equation for $Q(s, t)$.
since $(A \cdot B \cdot C)^{\top}=C^{\top} \cdot B^{\top} \cdot A^{\top}$

$$
G_{i}(t)=g_{i}^{\top} \cdot M^{\top} \cdot T^{\top}=\left[\begin{array}{llll}
g_{i 1} & g_{i 2} & g_{i 3} & g_{i 4}
\end{array}\right] \cdot M^{\top} \cdot T^{\top}
$$

Hermite Surfaces

$$
\begin{aligned}
& G_{i}(t)=g_{i}^{\top} \cdot M^{\top} \cdot T^{\top}=\left[\begin{array}{llll}
g_{i 1} & g_{i 2} & g_{i 3} & g_{i 4}
\end{array}\right] \cdot M^{\top} \cdot T^{\top} \\
& \text { therefore } Q(s, t)=S \cdot M\left|\begin{array}{llll}
g_{11} & g_{12} & g_{13} & g_{14} \\
g_{21} & g_{22} & g_{23} & g_{24} \\
g_{31} & g_{32} & g_{33} & g_{34} \\
g_{41} & g_{42} & g_{43} & g_{44}
\end{array}\right| \cdot M^{\top} \cdot T^{\top}
\end{aligned}
$$

or $Q(s, t)=S \cdot M \cdot G \cdot M^{\top} \cdot T^{\top} \quad(0<=t<=1) \quad(0<=s<=1)$
thus an x, y, z point can be found for a given value of s and t.
If M is M_{H} then we have a Hermite surface:
e.g. $x(s, t)=s . M_{H}\left|\begin{array}{l}P_{1}(t) \\ P_{4}(t) \\ R_{1}(t) \\ R_{4}(t)\end{array}\right|$
where:

$$
P_{1}(t)=T \cdot M_{H}\left|\begin{array}{l}
g_{11} \\
g_{12} \\
g_{13} \\
g_{14}
\end{array}\right| \quad P_{4}(t)=T . M_{H}\left|\begin{array}{l}
g_{12} \\
g_{22} \\
g_{23} \\
g_{24}
\end{array}\right| \quad R_{1}(t)=T \cdot M_{H}\left|\begin{array}{l}
g_{31} \\
g_{32} \\
g_{33} \\
g_{34}
\end{array}\right| \quad R_{4}(t)=T . M_{H}\left|\begin{array}{l}
g_{41} \\
g_{42} \\
g_{43} \\
g_{44}
\end{array}\right|
$$

Hermite Surfaces

continued

$Q(s, t)=S \cdot M\left|\begin{array}{llll}g_{11} & g_{12} & g 13 & g 14 \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g 33 & g 34 \\ g 41 & g 42 & g 43 & g 44\end{array}\right| \cdot M^{\top} \cdot T^{\top}$

The ' g ' matrix for the hermite surface is:

Continuity between surface patches
Patch 1
Patch 2

$$
\left|\begin{array}{cccc}
- & - & - & - \\
g_{21} & g_{22} & g_{23} & g_{24} \\
- & - & - & - \\
g_{41} & g_{42} & g_{43} & g_{44}
\end{array}\right|\left|\begin{array}{cccc}
g_{21} & g_{22} & g_{23} & g_{24} \\
- & - & - & - \\
g_{41} & \mathrm{~kg}_{42} & \mathrm{~kg}_{43} & \mathrm{~kg}_{44} \\
- & - & - & -
\end{array}\right| \quad k>0
$$

where:
where:
$P_{1}(t)=T . M_{H}$

$$
\left|\begin{array}{l}
g_{11} \\
g_{12} \\
g_{13} \\
g_{14}
\end{array}\right| \quad P_{4}(t)=T . M_{H}\left|\begin{array}{l}
g_{12} \\
g_{22} \\
g_{23} \\
g_{24}
\end{array}\right| \quad R_{1}(t)=T . M_{H}\left|\begin{array}{l}
g_{31} \\
g_{32} \\
g_{33} \\
g_{34}
\end{array}\right| \quad R_{4}(t)=T . M_{H}\left|\begin{array}{l}
g_{41} \\
g_{42} \\
g_{43} \\
g_{44}
\end{array}\right|
$$

Bezier patches

Uniformly polygonised patch and Bezier control points

Adaptive Subdivision algorithm at work on the spout

Drawing Cubics

Straightforward implementation by Horner's Rule e.g.
void x (double t)
\{
return $t *(t *(t * a x+b x)+c x)+d x$; \}
5 multiplies 3 additions

Repeated Evaluation of Cubic by Forward Differences

Definition

$$
\Delta f(t)=f(t+\delta)-f(t) \delta>0
$$

rewriting: $f(t+\delta)=\Delta f(t)+f(t)$

Rewriting iteratively: $f_{n+1}=f_{n}+\Delta f_{n}$

$$
f(t)=a t^{3}+b t^{2}+c t+d
$$

$$
\Delta f(t)=a(t+\delta)^{3}+b(t+\delta)^{2}+c(t+\delta)+d
$$

$$
-\left(a t^{3}+b t^{2}+c t+d\right)
$$

$$
\Delta f(t)=3 a t^{2} \delta+t\left(3 a \delta^{2}+2 b \delta\right)+a \delta^{3}+b \delta^{2}+c \delta--(1)
$$

So $\Delta f(t)$ is second degree. Applying forward differences again to reduce this further:
$\Delta^{2} f(t)=\Delta(\Delta f(t))=\Delta f(t+\delta)-\Delta f(t)$
applying by writing $(t+\delta)$ for t in (1) $\Delta f(t)$ or $\left(3 a t^{2} \delta+t\left(3 a \delta^{2}+2 b \delta\right)+a \delta^{3}+b \delta^{2}+c \delta\right)$

Yields $\Delta^{2} f(t)=6 a \delta^{2} t+6 a \delta^{3}+2 b \delta^{2}--(2)$
$\Delta^{3} f(t)=\Delta\left(\Delta^{2} f(t)\right)=\Delta^{2} f(t+\delta)-\Delta^{2} f(t)$
substituting $(t+\delta)$ for t in (2)
$\Delta^{3} f(t)=6 a \delta^{3}--(3)$

Forward Differences

By Definition : $\Delta f(t)=f(t+\delta)-f(t)$
rewriting: $\quad f(t+\delta)=f(t)+\Delta f(t)$
$f_{n+1}=f_{n}+\Delta f_{n}$
In other words $t_{n}=n \delta$ and $f_{n}=f\left(t_{n}\right)$
f is evaluated at equal intervals of size δ.
At $t=0$

$$
\begin{array}{ll}
f_{0} & =d \\
\Delta f_{0} & =a \delta^{3}+b \delta^{2}+c \delta \\
\Delta^{2} f_{0} & =6 a \delta^{3}+2 b \delta^{2} \\
\Delta^{3} f_{0} & =6 a \delta^{3}
\end{array}
$$

by definition: $\quad \Delta^{2} f(t)=\Delta f(t+\delta)-\Delta f(t)$
or $\quad \Delta^{2} f_{n}=\Delta f_{n+1}-\Delta f_{n}$,
similarly

$$
\begin{aligned}
& \Delta^{3} f(t)=\Delta^{2} f(t+\delta)-\Delta^{2} f(t) \\
& \Delta^{2} f_{n+1}=\Delta^{2} f_{n}+\Delta^{3} f_{n}
\end{aligned}
$$

and $\Delta^{3} f_{n}$ is constant

Repeat following steps m times with n initially $0:-$

$$
\begin{aligned}
f_{n+1} & =f_{n}+\Delta f_{n} \\
\Delta f_{n+1} & =\Delta f_{n}+\Delta^{2} f_{n} \\
\Delta^{2} f_{n+1} & =\Delta^{2} f_{n}+\Delta^{3} f_{0}
\end{aligned}
$$

$n=0$

$$
\begin{array}{ll}
f_{1} & =f_{0}+\Delta f_{0} \\
\Delta f_{1} & =\Delta f_{0}+\Delta^{2} f_{0} \\
\Delta^{2} f_{1} & =\Delta^{2} f_{0}+\Delta^{3} f_{0}
\end{array}
$$

$n=1$

$$
\begin{aligned}
f_{2} & =f_{1}+\Delta f_{1} \\
\Delta f_{2} & =\Delta f_{1}+\Delta^{2} f_{1} \\
\Delta^{2} f_{2} & =\Delta^{2} f_{1}+\Delta^{3} f_{0}
\end{aligned}
$$

Suppose we want 64 steps
$n=64$ or $\delta=1 / 64$
$t_{0}=0 \delta=0$
$t_{1}=1 \delta=1 / 64$
$t_{2}=2 \delta=2 / 64$ etc.

Forward Differences

continued

$$
\begin{aligned}
& f_{0}=d \\
& \Delta f_{0}=a \delta^{3}+b \delta^{2}+c \delta \\
& \Delta^{2} f_{0}=6 a \delta^{3}+2 b \delta^{2} \\
& \Delta^{3} f_{0}=6 a \delta^{3}
\end{aligned}
$$

$$
\left[\begin{array}{l}
f_{0} \\
\Delta f_{0} \\
\Delta^{2} f_{0} \\
\Delta^{3} f_{0}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
\delta^{3} & \delta^{2} & \delta & 0 \\
6 \delta^{3} & 2 \delta^{2} & 0 & 0 \\
6 \delta^{3} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

$D_{x}=E(\delta) C_{x}$
f_{0}
Δf_{0}
$D_{y}=E(\delta) C_{y}$
$\Delta^{2} f_{0}$
$D_{z}=E(\delta) C_{z}$
$\Delta^{3} f_{0}$
$f x(t)=a x t^{3}+b x t^{2}+c x t+d x$
similarly for y and z
so we have:

algorithm writing Δx for $\Delta f_{n x}$ etc.

$$
\begin{aligned}
& \text { for (} i=0 ; i<n ; i++ \text {) \{ } \\
& x+=\Delta x ; \quad \Delta x+=\Delta^{2} x ; \quad \Delta^{2} x+=\Delta^{3} x ; \\
& y+=\Delta y ; \quad \Delta y+=\Delta^{2} y ; \quad \Delta^{2} y+=\Delta^{3} y ; \\
& \mathrm{z}+=\Delta \mathrm{z} ; \quad \Delta \mathrm{z}+=\Delta^{2} \mathrm{z} ; \quad \Delta^{2} \mathrm{z}+=\Delta^{3} \mathrm{z} ; \\
& \text { lineAbs(} x, y, z \text {); }
\end{aligned}
$$

Example

Bezier Curve Segment

For $Q x(t)=T M b G b x$
$C x=M b G b x$

$$
G b x=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right] \quad M b=\left[\begin{array}{rrrr}
1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

$Q x(t)=a x t^{3}+b x t^{2}+c x t+d x$
$a x=2$
$b x=-3$
$c x=3$
$d x=0$
we have:

$$
Q x(t)=2 t^{3}-3 t^{2}+3 t
$$

taking 100 steps $\delta=0.01$
At $t=0$

$$
\begin{array}{lll}
f_{0}=d & = & 0 \\
\Delta f_{0}=a \delta^{3}+b \delta^{2}+c \delta & =0.029702 \\
\Delta^{2} f_{0}=6 a \delta^{3}+2 b \delta^{2} & =-0.000588 \\
\Delta^{3} f_{0}=6 a \delta^{3} & =0.000012
\end{array}
$$

Example $f_{0}=0$

continued

$$
\begin{aligned}
& \Delta f_{0}=0.029702 \\
& \Delta^{2} f_{0}=-0.000588 \\
& \Delta^{3} f_{0}=0.000012
\end{aligned}
$$

$$
\text { for }(i=0 ; i<n ; i++)\{
$$

$$
x+=\Delta x ; \quad \Delta x+=\Delta^{2} x ; \quad \Delta^{2} x+=\Delta^{3} x
$$

$$
y+=\Delta y ; \quad \Delta y+=\Delta^{2} y ; \quad \Delta^{2} y+=\Delta^{3} y ;
$$

$$
z+=\Delta z ; \quad \Delta z+=\Delta^{2} z ; \quad \Delta^{2} z+=\Delta^{3} z
$$

$$
\text { lineAbs }(x, y, z)
$$

$$
\}
$$

\times	Δx	$\Delta^{2} \times$	$\Delta^{3} \times$
0	0.029702	0.029114	0.000012
0.029702	0.029114	-0.000576	0.000012
0.058816	0.028538	-0.000564	0.000012
0.087354	0.027974	-0.000552	0.000012
0.115328	0.027422	-0.000540	0.000012

.etc. until

1.912645	0.028538	0.000576	0.000012
1.941183	0.029114	0.000588	0.000012
1.970297	0.029702	0.000600	0.000012
1.999999	0.030302	0.000612	0.000012

